
Adaptive Knowledge Propagation in Web Ontologies

Pasquale Minervini, Claudia d’Amato, Nicola Fanizzi, Floriana Esposito

1 Department of Computer Science - University of Bari, Italy
{firstname.lastname}@uniba.it

Abstract. The increasing availability of structured machine-processable knowl-
edge in the WEB OF DATA calls for machine learning methods to support standard
reasoning based services (such as query-answering and logic inference). Statis-
tical regularities can be efficiently exploited to overcome the limitations of the
inherently incomplete knowledge bases distributed across the Web. This paper
focuses on the problem of predicting missing class-memberships and property
values of individual resources in Web ontologies. We propose a transductive in-
ference method for inferring missing properties about individuals: given a class-
membership/property value learning problem, we address the task of identifying
relations which are likely to link similar individuals, and efficiently propagating
knowledge across such (possibly diverse) relations. Our experimental evaluation
demonstrates the effectiveness of the proposed method.

1 Introduction

Standard query answering and reasoning services for the Semantic Web [2] (SW) largely
rely on deductive inference. However, purely deductive reasoning with SW represen-
tations suffers from several limitations: inference tasks can be computationally com-
plex, and distributed knowledge bases (KBs) are often characterized by incomplete and
conflicting knowledge. In this context, many complex tasks (such as query answering,
clustering or ranking) are ultimately based on assessing the truth value of ground facts.
Deciding on the truth of specific facts (assertions) in SW knowledge bases requires to
take into account the open-world form of reasoning adopted in this context: a failure
on ascertaining the truth of a given fact does not imply that such fact is false, but rather
that its truth value cannot be deductively inferred from the KB (e.g. because of a tem-
porary lack of knowledge). This differs from the Negation As Failure, commonly used
with databases and logic programs. Other issues are related to the distributed nature of
the data across the Web. Cases of contradictory answers or flawed inferences may be
caused by distributed pieces of knowledge that may be mutually conflicting.

The prediction of the truth value of an assertion can be cast as a classification prob-
lem to be solved through statistical learning: individual resources in an ontology can be
regarded as statistical units, and their properties can be statistically inferred even when
they cannot be deduced from the KB. Several approaches have been proposed in the SW
literature (see [15] for a recent survey). A major issue with the methods proposed so far
is that the induced statistical models (as those produced by kernel methods, tensor fac-
torization, etc.) are either difficult to interpret by experts and to integrate in logic-based
SW infrastructures, or computationally impractical.



Related Work A variety of methods have been proposed for predicting the truth value
of assertions in Web ontologies: those include generative models [16], kernel meth-
ods [12], upgrading of propositional algorithms [11], matrix and tensor factorization
methods [14, 19]. An issue with existing methods is that they either rely on a possibly
expensive search process, or induce statistical models that are often not easy to interpret
by human experts. Kernel methods induce models (such as separating hyperplanes) in a
high-dimensional feature space implicitly defined by a kernel function. The underlying
kernel function itself usually relies on purely syntactic features of the neighborhood
graphs of two individual resources (such as their common subtrees [12] or isomorphic
subgraphs [21]). In both cases, there is not necessarily a direct translation in terms of
domain knowledge. Latent variable and matrix or tensor factorization methods such
as [14, 16, 19] try to explain the observations in terms of latent classes or attributes,
which also may be non-trivial to describe using the domain’s vocabulary. The approach
in [11] tries to overcome this limitation by making use of complex features defined
using the ontology’s terminology; however, this method involves a search process in a
possibly very large feature space, which might not be feasible in practice.

Contribution We propose a transductive inference method for predicting the truth
value of assertions, which is based on the following intuition: individuals that are sim-
ilar in some aspects tend to be linked by specific relations. Yet it may be not straight-
forward to determine such relations for a given learning task. Our approach aims at
identifying such relations, and permits the efficient propagation of information through
chains of related individuals. It turns out to be especially useful with real-world shallow
ontologies, i.e. those with a relatively simple, fixed terminology and populated by very
large amounts of instance data such as citation or social networks, in which related en-
tities tend to influence each other. These are particularly frequent in the context of the
Linked Open Data [7] (LOD).

Unlike other approaches, the proposed method can be used to identify which rela-
tions are likely to link examples with similar characteristics. Similarly to graph-based
semi-supervised learning (SSL) methods [5], we rely on a similarity graph linking pairs
of similar examples, for propagating knowledge among them. SSL methods are often
designed for propositional representations, while the proposed method addresses the
problem of learning from real ontologies, where examples (represented by individuals
in the KB) can be interlinked by diverse relations. In particular, this article makes the
following contributions:

– A method for efficiently propagating knowledge among similar examples: it lever-
ages a similarity graph, which plays a critical role in the propagation process.

– An approach to learning an optimal similarity graph for a given prediction task, by
leveraging a set of semantically diverse relations among examples in the ontology.

To the best of our knowledge, our approach is the first to explicitly identify relations
that semantically encode similarities among examples w.r.t. a given learning task. The
method proposed in this article is a significant advance w.r.t. our previous work in [13],
in which we adopt kernel-defined weights to construct the similarity graph. However,
such weights were lacking a meaningful interpretation.



The remainder of the paper is organized as follows. In Sect. 2, we review the basics
of semantic knowledge representation and reasoning tasks, and we introduce the con-
cept of transductive learning in the context of semantic KBs. In Sect. 3, we illustrate
the proposed method, which is based on the efficient propagation of information among
related examples, and address the problem of identifying which relations are likely to
link similar examples. In Sect. 4, we provide empirical evidence for the effectiveness
of the proposed method. In Sect. 5, we summarize the proposed approach, outline its
limitations and discuss possible future research directions.

2 Transductive Learning with Web Ontologies

We assume the knowledge base (KB) is encoded in a syntactic variant of some Descrip-
tion Logic [1] (DL), and describes a set of objects, their attributes and relations. Basics
elements are atomic concepts NC = {C,D, . . .} interpreted as subsets of a domain of
objects (e.g. Person or Article), and atomic roles NR = {R,S, . . .} interpreted as
binary relations on such a domain (e.g. friendOf or authorOf). Domain objects are
represented by individuals NI = {a, b, . . .}, each associated to a domain entity (such
as a person in a social network, or an article in a citation network).

Specifically, we consider KBs in the OWL 2 language 1, which has its theoretical
foundations in DLs: concepts and roles are referred to as classes and properties, re-
spectively. Classes, properties and individuals are represented in the ontology by their
URIs. Each DL provides a set of constructors that can be used to build complex concept
descriptions using atomic concepts and roles.

A DL KB K = 〈T ,A〉 is composed by two main components: a TBox T , which
contains terminological axioms, and an ABoxA, which contains ground axioms (called
assertions) about individuals. In the following, we will denote as Ind(A) the set of
individuals occurring in A.

As inference procedure, Instance Checking consists in deciding whether K |= Q(a)
(where Q is a query concept and a is an individual) holds. Because of the Open-World
Assumption, instance checking may provide three possible outcomes, i.e. i)K |= Q(a),
ii)K |= ¬Q(a) and iii)K 6|= Q(a)∧K 6|= ¬Q(a). This means that failing to deductively
infer the membership of an individual a to a concept Q does not imply that a is a
member of its complement ¬Q.

It is also possible to express more complex queries: given a (infinite) set of variables
NV , a Conjunctive Query q is a conjunction of concept or role atoms (C(v) orR(v, v′),
with v, v′ ∈ NV ∪ NI ) built on the signature of K. The set of its variables VAR(q)
is composed by answer variables and (existentially) quantified variables. Informally, a
binding of the variables w.r.t. some model of K determines the satisfiability of a query
and a result via the answer variables values. K |= q denotes the satisfiability of q w.r.t.
all models of K.

In this work, we focus on transductive learning [20] rather than inductive learning.
Inductive learning focuses on the creation of general rules, which are then applied to
test cases, while transductive learning focuses on generalizing directly from observed
training cases to specific test cases.

1 OWL 2 W3C Recommendation: http://www.w3.org/TR/owl-overview/

http://www.w3.org/TR/owl-overview/


The main motivation behind the choice of transductive learning is described by the
main principle in [20]: “If you possess a restricted amount of information for solving
some problem, try to solve the problem directly and never solve a more general problem
as an intermediate step. It is possible that the available information is sufficient for a
direct solution but is insufficient for solving a more general intermediate problem”.

On the ground of the available information, the method proposed in this work aims
at learning a labeling function for a given target class that can be used for predicting
whether examples, represented by individuals in the knowledge base, are members of
a target class C (positive class) or to its complement ¬C (negative class), when this
cannot be deductively inferred. This setting is closely related to the transductive classi-
fication setting in e.g. [22].

Formally, the problem can be defined as follows:

Definition 2.1 (Transductive Class-Membership Learning).
Given:

– a target class C in a KB K;
– a set of examples X ⊆ Ind(A) partitioned into:
• a set of positive examples: X+ , {a ∈ X | K |= C(a)};
• a set of negative examples: X− , {a ∈ X | K |= ¬C(a)};
• a set of neutral (unlabeled) examples: X0 , {a ∈ X | a 6∈ X+ ∧ a 6∈ X−};

– a set of labeling functions F with domain X and range {−1,+1}, i.e.

F , {f | f : X → {+1,−1}};

– a cost function cost(·) : F 7→ R defined over labeling functions in F;

Find f∗ ∈ F minimizing cost(·) w.r.t. X:

f∗ ← argmin
f∈F

cost(f).

The transductive learning task is cast as the problem of finding a labeling function
f∗ for a target class C, defined over a finite set of labeled (if positive or negative) and
unlabeled (if their membership to the target class cannot be determined) examples X ,
which minimizes an arbitrary cost criterion. The set of examples X is a subset of the
individuals occurring in the KB.

Example 2.1 (Transductive Class-Membership Learning). Consider an ontology mod-
eling an academic domain. The problem of learning whether a set of researchers is
affiliated to a given research group or not, provided a set of positive and negative ex-
amples of affiliates, can be cast as a transductive class-membership learning problem:
examples (consisting in a subset of the individuals in the ontology, each corresponding
to a researcher), represented by the set X , can be either positive, negative or neutral de-
pending on their membership to a target class ResearchGroupAffiliate. The trans-
ductive learning problem reduces to finding the best labeling function f (according to
a given criterion, represented by the cost function), providing a membership value for
each example in X .



In this work, we leverage the diverse relations holding among examples in the ontol-
ogy to propagate knowledge, in the form of label information, among similar examples.

The method proposed in this article is related to graph-based semi-supervised learn-
ing [5] (SSL) methods. In particular, it is based on the cluster assumption: if two exam-
ples are in the same cluster, then their class memberships should be similar. Similarly
to graph-based SSL methods, we define a similarity graph over examples, and look for
a labeling function f that varies smoothly across similar examples (i.e. those linked
together in the similarity graph).

3 Knowledge Propagation

In this section we present a new method, named Adaptive Knowledge Propagation
(AKP), for solving the learning problem in Def. 2.1 in the context of Web ontologies. In
Sect. 3.1 we show how a (weighted) similarity graph defined over examples can be effi-
ciently used to propagate label information among similar examples. The effectiveness
of this approach strongly depends on the choice of the similarity graph (represented in
the following by its adjacency matrix W). In Sect. 3.2, we show how the matrix W can
be learned from examples, by leveraging their relationships within the ontology.

3.1 Transductive Inference as an Optimization Problem

We now propose a solution to the transductive learning problem in Def. 2.1. As dis-
cussed in the end of Sect. 2, we look for a labeling function f∗ defined over examplesX ,
which is both consistent with labeled examples, and varies smoothly across examples in
the same cluster (according to the cluster assumption). In the following, we assume that
a (weighted) similarity graph over examples in X is already provided. Such a graph is
represented by its adjacency matrix W, such that Wij = Wji ≥ 0 if xi, xj ∈ X are
similar, and 0 otherwise. As in [5, ch. 11], we assume that Wii = 0. A solution to the
problem of learning W from examples is proposed in Sect. 3.2.

Formally, each labeling function f can be represented by a finite-size vector, where
fi ∈ {−1,+1} is the label for the i-th element in the set of examples X . According
to [22], labels can be enforced to vary smoothly among similar examples by considering
a cost function with the following form:

E(f) ,
1

2

|X|∑
i=1

|X|∑
j=1

Wij(fi − fj)
2 + ε

|X|∑
i=1

f2i , (1)

where the first term enforces the labeling function to vary smoothly among similar
examples (i.e. those connected by an edge in the similarity graph), and the second term
is a L2 regularizer (a penalty on the complexity of the labeling function) with weight
ε > 0 over f . A labeling for unlabeled examples in X0 is obtained by minimizing
the function E(·) in Eq. 1, constraining the value of fi to 1 (resp. −1) for all positive
examples xi ∈ X+ (resp. negative examples xi ∈ X−).

Let L , X+ ∪X− and U , X0 represent labeled and unlabeled examples, and fL,
fU their labels respectively. Constraining the labeling function fU to take only discrete
values on unlabeled examples (i.e. fi ∈ {−1,+1},∀xi ∈ X0) has two main drawbacks:



– The labeling function f can only provide a hard classification (i.e. fU ∈ {−1,+1}|U |),
without any measure of confidence;

– The function E(·) defines the energy function of a discrete Markov Random Field,
and calculating the marginal distribution over labels fU is inherently difficult [10].

To overcome these problems, in [22] authors propose a continuous relaxation of fU ,
where labels for unlabeled examples are represented by real values (i.e. fU ∈ R|U |).
This allows for a simple, closed-form solution to the problem of minimizing the func-
tion E(·) for a given value of fL, where fL represents the labels for labeled examples.

Application to Class-Membership Learning. We can solve the learning problem in
Def. 2.1 by minimizing the cost function E(·) in Eq. 1, for a given labeling for labeled
examples fL. Eq. 1 can be rewritten as [22]:

E(f) = fT (D−W)f + εfT = fT (L+ εI)f , (2)

where D is a diagonal matrix such that Dii =
∑|X|
j=1 Wij and L , D−W is the graph

Laplacian of W. Reordering the vector f and matrices W and L w.r.t. the membership
of examples to L and U , they can be rewritten as:

f =

[
fL
fU

]
, W =

[
WLL WLU

WUL WUU

]
, L =

[
LLL LLU
LUL LUU

]
. (3)

The problem of finding a real valued labeling function fU which minimizes the cost
function E(·) for a given value of fL has a closed form solution [22]:

f∗U = (LUU + εI)−1WULfL. (4)

Complexity. A solution for Eq. 4 can be computed efficiently in nearly-linear time
w.r.t. |X|. Indeed computing f∗U can be reduced to solving a linear system in the form
Ax = b, with A = (LUU + εI), b = WULfL and x = f∗U . A linear system Ax = b
with A ∈ Rn×n can be solved in nearly linear time w.r.t. n if the coefficient matrix A is
symmetric diagonally dominant2 (SDD). An algorithm for solving SDD linear system
is proposed in [9]: its time-complexity is ≈ O

(
m log2 n

)
, where m is the number of

non-zero entries in A and n is the number of variables in the system of linear equations.
In Eq. 4, the matrix (LUU + εI) is SDD, since the graph Laplacian L is SDD [18].

3.2 Learning to Propagate Knowledge in Web Ontologies

The approach to propagate knowledge across similar examples discussed in Sect. 3.1
relies on a similarity graph, represented by its adjacency matrix W.

The underlying assumption of this work is that some relations among individuals
in the KB might encode a similarity relation w.r.t. a specific target property or class:
identifying such relations can help to propagate information among similar examples,
and provide new knowledge about the domain.

2 A matrix A is SDD iff A is symmetric (i.e. A = AT ) and ∀i : Aii ≥
∑

i 6=j |Aij |.



In literature, this phenomenon is also referred to as Homophily [3]: a relation be-
tween examples (such as friendship in a social network) can be correlated with those
individuals being similar w.r.t. a set of properties (such as political views, hobbies, re-
ligious beliefs). However, depending on the learning task at hand, not all relations are
equally effective at encoding similarities between examples. For example, in a social
network, friends may tend to share common interests, while quiet people may tend to
prefer talkative friends and vice-versa.

In this work, we represent each distinct relation type by means of an adjacency
matrix W̃, such that W̃ij = W̃ji = 1 iff the relation rel(xi, xj) between xi and xj
holds in the ontology (i.e. K |= rel(xi, xj)). The predicate rel might represent any
generic relation between examples (e.g. friendship or co-authorship). For simplicity, we
assume W̃ii = 0,∀i.

Given a set of adjacency matricesW , {W̃1, . . . ,W̃r}, according to the assump-
tion that not all relations are equally important in the construction of the similarity
graph, we define W as a linear combination of the matrices inW:

W ,
r∑
i=1

µiW̃i, with µi ≥ 0,∀i (5)

where each µi, is a parameter representing the contribution of the matrix W̃i in the
construction of W. Non-negativity in µ enforces that W has non-negative weights,
and therefore that the corresponding graph Laplacian L is PSD [18]. This ensures that
the problem of finding a global minimum for Eq. 2 has a unique solution that can be
calculated in closed form. In the following, we propose a solution to the problem of
efficiently learning the parameters {µ, ε} from a set of labeled and unlabeled examples.

Parameters Learning. The parametric form of W is fully specified by the parame-
ters µ in Eq. 5, which reflect the importance of each relation in the construction of the
similarity graph. In addition, the approach in Sect. 3.1 depends on the choice of a reg-
ularization parameter ε. In this work, we propose learning the parameters Θ , {µ, ε}
by Leave-One-Out (LOO) Error minimization. Provided that propagation can be per-
formed efficiently, we are able to directly computing the LOO error: it is defined as the
summation of reconstruction errors obtained by considering each labeled example, in
turn, as unlabeled, and predicting its label.

Let Ui , U ∪ {xi} and Li , L − {xi}: w.l.o.g. we assume that the label of the
left-out example xi ∈ L is in the first position of the new real valued labeling vector
fUi . Let `(x, x̂) be a generic, differentiable loss function (e.g. `(x, x̂) = |x − x̂| for
the absolute loss, or `(x, x̂) = (x− x̂)2/2 for the quadratic loss). The LOO Error is
formally defined as follows:

Q(Θ | fL) ,
|L|∑
i=1

`(fi, f̂i), (6)

where eT , (1, 0, . . . , 0) ∈ Ru+1 and f̂i , eT (LUiUi
+ εI)−1WUiLi

fLi
represents

the continuous label value assigned to xi as if such a value was not known in advance.



The vector eT is needed to select the predicted label for the left-out example xi ∈ L.
This leads to the definition of the following criterion for learning the parameters Θ:

Definition 3.1 (Minimum LOO Error Parameters). Given a set of labeled (resp. un-
labeled) examples L (resp. U ) and a set of adjacency matricesW , each corresponding
to a relation type, the minimum LOO Error Parameters Θ∗LOO are defined as follows:

Θ∗LOO = arg min
Θ={µ,ε}
µ≥0,ε>0

Q(Θ | fL) + λ||Θ||2, (7)

where the functionQ is defined as in Eq. 6 and λ ≥ 0 weights a L2 regularization term
which controls the complexity of parameters Θ.

The objective function in Def. 3.1 is differentiable and can be efficiently minimized
by using gradient-based function minimization approaches such as gradient descent.
Let Zi = (LUiUi + εI): the gradient of Q w.r.t. a parameter θ ∈ Θ is given by:

∂Q(Θ | fL)
∂θ

=

|L|∑
i=1

∂`(fi, f̂i)

∂ f̂i

[
eTZ−1i

(
∂WUiLi

∂θ
fLi −

∂Zi
∂θ

f∗Ui

)]
. (8)

3.3 Identifying Meaningful Relations

In Sect. 3.2, we expressed the adjacency matrix of the similarity graph W as a linear
combination of adjacency matrices W̃i ∈ W , each corresponding to a distinct relation
type among examples within the ontology (such as friendship or co-authorship). We
now discuss the problem of efficiently retrieve possibly non-trivial, yet meaningful,
relations among examples in X .

Simply retrieving binary relations encoded by atomic roles in the KB might fail to
capture a number of meaningful, semantically relevant, relations among examples. For
example, in an academic domain, the KB may contain each researcher’s group affilia-
tions (e.g. by means of a affiliatedTo atomic role), but the relation “sharing the same
affiliation” between researchers might not be captured by any atomic role between ex-
amples in X . To overcome this issue, we rely on Conjunctive Queries (CQs), described
in Sect. 2, to retrieve relations between examples. For example, the relation “sharing
the same affiliation” between a, b ∈ X can be assessed by means of the following CQ:

? : ∃z.(affiliatedTo(a, z) ∧ affiliatedTo(b, z)),

where z ∈ NV is a non-distinguished variable.
In this work, we leverage the relations between examples holding in the KB for con-

structing the similarity graph; in particular, we consider relations that can be expressed
using CQs. However, the number of such relations might be very large. To overcome
this problem, in empirical evaluations (see Sect. 4), we considered two types of such
relations holding between pairs of examples a, b ∈ X:

– Simple relations, i.e. those encoded by CQs in the form:

? : r(a, b),

where r ∈ NR is an atomic role;



– Composite relations, i.e. those corresponding to CQs in the form:

? :∃z.(r(a, z) ∧ r(b, z)) or ? :∃z.(r(z, a) ∧ r(z, b)),

where r ∈ NR and z ∈ NV .

Current technologies allow to efficiently retrieve complex relations holding among
examples. CQs can be expressed in the SPARQL-DL [17] query language. SPARQL-
DL seems particularly convenient for the task: it is a specialization of SPARQL, sharing
its syntax and working under OWL’s Direct Model-Theoretic Semantics3. SPARQL-DL
queries generalize CQs as they admit variables standing for property names (allowing
to retrieve different types of complex relations among individuals at once) together
with non-distinguished variables, i.e. those that are bound to entities that need not be
interpreted as specific individuals in the queried ontology.

Example 3.1. Given a KB K, suppose that statistical units (i.e. individuals of interest)
are all persons, represented by members of the concept foaf : Person. Assume that
relations of interest correspond to the result of CQs in the form:

? :∃z.(foaf : Person(a) ∧ foaf : Person(b) ∧ r(a, z) ∧ r(b, z)),

where r ∈ NR, a, b ∈ NI and z ∈ NV . Such relations can be retrieved by a single
SPARQL-DL query:

SELECT DISTINCT ?p ?q ?r WHERE {
?p a foaf:Person .
?q a foaf:Person .
?p ?r _:o .
?q ?r _:o .
?r rdf:type owl:ObjectProperty .

}

Note that the variable :o is a non-distinguished variable which does not need to be
materialized in the KB (i.e. represented by an asserted individual). �

This approach to retrieving complex relations presents multiple advantages: a single
SPARQL-DL query can capture a large class of CQs, thanks to the use of variables in
place of role names. We will use the following short-hand notations to describe more
concisely relations elicited during the empirical evaluation phase:

rel1 ◦ rel−12 (a, b) ≡ ∃z.(rel1(a, z) ∧ rel2(z, b)),
rel−11 ◦ rel2(a, b) ≡ ∃z.(rel1(z, a) ∧ rel2(b, z)),

where rel1, rel2 ∈ NR, a, b ∈ X and z ∈ NV .

3.4 Summary of the Proposed Method

The method, which we refer to as Adaptive Knowledge Propagation (AKP), can be
summarized by the following steps:

3 http://www.w3.org/TR/owl2-direct-semantics

http://www.w3.org/TR/owl2-direct-semantics


1. Retrieve relations among examples in X using SPARQL-DL queries, and create a
set of adjacency matricesW = {W̃1, . . . ,W̃r}, one for each relation type.

2. Given a labeling for labeled examples fL, find the minimum Leave-One-Out Er-
ror parameters Θ∗LOO defined in Def. 3.1, by solving the constrained optimization
problem in Eq. 7 (e.g. by using a gradient-based optimization method).

3. Use the learned parameters Θ∗LOO = {µ, ε} to find a labeling for unlabeled exam-
ples fU , by first calculating the adjacency matrix of the similarity graph W as in
Eq. 5, and then propagating knowledge across the graph as in Eq. 4.

4 Empirical Evaluation

The method discussed in Sect. 3 was experimentally evaluated in comparison with other
approaches proposed in the literature on a variety of assertion prediction problems.
Sources and datasets for reproducing the experiments are available at https://code.
google.com/p/akp/. We now describe the setup of experiments and their outcomes.

4.1 Setup

In empirical evaluations, we used an open source DL reasoner 4 for answering the
SPARQL-DL queries.

Ontologies We considered three real world ontologies: the AIFB PORTAL Ontology 5,
the DBPEDIA 3.9 Ontology [4] and the BRITISH GEOLOGICAL SURVEY (BGS) On-
tology 6. The characteristics of these ontologies are outlined in Tab. 1.

The AIFB PORTAL Ontology relies on knowledge from the SWRC Ontology and
metadata available from the Semantic Portal of the AIFB institute: it models key con-
cepts within a research community, such as persons, articles, technical reports, projects
and courses (e.g.∼500 individuals belong to the class foaf : Person and∼2400 to the
class foaf : Document). DBPEDIA [4] makes structured information extracted from
Wikipedia available in the LOD cloud, providing unique identifiers for the described
entities that can be dereferenced over the Web: DBPEDIA 3.9, released in September
2013, describes 4.0 million entities. The BRITISH GEOLOGICAL SURVEY Ontology is
part of an effort by the British Geological Survey, a premier center for earth science, to
publish geological data (such as hydro-geological, gravitational and magnetic data). In
particular, the ontology models knowledge on 11697 “Named Rock Units”.

Experimental Setting The proposed method, denoted AKP, is summarized in Sect. 3.4.
We used Projected Gradient Descent to minimize the Leave-One-Out Error in Eq. 6
w.r.t. available labels fL (using the absolute loss as loss function), together with an
intermediate line search to assess the step size and early stopping. The regularization
parameter λ in Eq. 6 was fixed to λ = 10−8, preventing the parameters to diverge.

4 Pellet v2.3.1 – http://clarkparsia.com/pellet/
5 http://www.aifb.kit.edu/web/Wissensmanagement/Portal
6 http://data.bgs.ac.uk/, as of March 2014

https://code.google.com/p/akp/
https://code.google.com/p/akp/
http://clarkparsia.com/pellet/
http://www.aifb.kit.edu/web/Wissensmanagement/Portal
http://data.bgs.ac.uk/


Table 1: Ontologies considered in the experiments
Ontology DL Language #Axioms #Individuals #Properties #Classes

AIFB PORTAL [12] ALEHO(D) 268540 44328 285 49
DBPEDIA 3.9 [4] Frag. ALCH 78795 16606 132 251

BGS [21] ALI(D) 825133 87555 154 6

Before each experiment, the class-membership relations that were the target of the
prediction task were removed from the ontology. Following the related evaluation pro-
cedures in [12, 21], members of the target class were considered as positive examples,
while an equal number of negative examples was randomly sampled from unlabeled ex-
amples. Remaining instances (i.e. neither positive nor negative) were considered as neu-
tral (unlabeled) examples. Results are reported in terms of Area Under the Precision-
Recall Curve (AUC-PR), a measure to evaluate rankings also used in e.g. [14]. In each
experiment, we considered the problem of predicting the membership to each of sev-
eral classes: for each of such classes, we performed a 10-fold cross validation (CV),
and report the average AUC-PR obtained using each of the considered methods.

We used the same 10-folds partitioning across experiments related to each of the
datasets. For such a reason, we report statistical significance tests using a paired, non-
parametric difference test (Wilcoxon T test). We also report diagrams showing how
using a smaller random sample of labeled training examples (i.e. 10%, 30%, 50%, . . ., a
plausible scenario for a number of real world settings with limited labeled training data),
and using the remaining examples for testing, affects the results in terms of AUC-PR.

Setup of the Compared Methods We compare AKP with state-of-the-art approaches
proposed for learning from ontological KBs. Specifically, we considered two kernel
methods: Soft-Margin SVM (SM-SVM) and Kernel Logistic Regression (KLR), to-
gether with different kernel functions suited for ontological KBs: we used the Intersec-
tion SubTree [12] (IST) and the Weisfeiler-Lehman [21] (WL) kernels for ontological
KBs. We also considered the SUNS [19] relational prediction model.

The RDF graph used by kernel functions and SUNS was materialized as follows: all
〈s, p, o〉 triples were retrieved by means of SPARQL-DL queries (where p was either
an object or a data-type property) together with all direct type and direct sub-class
relations. As in [12], IST kernel parameters were selected in d ∈ {1, 2, 3, 4} and λist ∈
{0.1, 0.3, . . . , 0.9}, and WL kernel parameters in d, h ∈ {1, 2, 3, 4} (where d represents
the depth of the considered neighborhood graph). In SM-SVM, in order to obtain a
ranking among instances, we applied the logistic function s to the decision boundary
f instead of the sign function (which is commonly used in the classification context),
thus obtaining s(f(·)) : X → [0, 1]. In SM-SVM, the parameter C was selected in
C ∈ {0.0, 10−6, 10−4, . . . , 104, 106}, while in KLR the weight λk associated to the
L2 regularizer was selected in λk ∈ {10−4, 10−3, . . . , 104}. In the SUNS relational
prediction model, parameters t and λ were selected in t ∈ {2, 4, 6, . . . , 24} and λs ∈
{0, 10−2, 10−1, . . . , 106}. All parameters were selected by grid optimization, using a
10-fold cross validation (CV) within the training set.



10% 30% 50% 70% 90%
0.2

0.4

0.6

0.8

1

Percentage of labeled examples used during training

A
U

C
-P

R

AUC-PR results – AIFB Portal

AKP

SVM (IST)

SVM (WL)

KLR (IST)

KLR (WL)

SUNS

Method AUC-PR (mean ± var.)
AKP 0.932± 0.013

SUNS 0.734± 0.030 H
SMSVM (IST) 0.825± 0.025 H
SMSVM (WL) 0.834± 0.025 H

KLR (IST) 0.817± 0.029 H
KLR (WL) 0.837± 0.025 H

Fig. 1: AIFB PORTAL – Left: AUC-PR results (mean, std.dev.) estimated by 10-fold
CV, obtained varying the percentage of labeled examples used for training – Right:
AUC-PR results estimated by 10-fold CV:H/O (resp.N/4) indicates that AKP’s mean
is significantly higher (resp. lower) in a paired Wilcoxon T test with p < 0.05 / p < 0.10

4.2 Results

Experiments with the AIFB PORTAL Ontology. As in [12,21], the learning task con-
sisted in predicting the affiliations of AIFB staff members to research groups. Specifi-
cally, in a set of 316 examples (each representing a researcher in the ontology), the task
consisted in predicting missing affiliations to 5 distinct research groups. Empirical re-
sults are described in Fig. 1. The table (right) summarizes the overall AUC-PR results on
the research group affiliation prediction task, obtained via 10-fold CV (one per research
group, in a one-versus-all setting). The plot shows average AUC-PR values describes
results obtained with a limited number of labeled training examples, and leaving the
rest to the test: error bars (pictured horizontally) represent twice the standard deviation.

The proposed method AKP yields significantly higher AUC-PR values in compar-
ison with the other considered methods, where statistical significance was calculated
with a Wilcoxon T test with p < 0.05. By identifying those relations that are likely to
link persons with similar research group affiliations, it shows that AKP can be used to
discover new knowledge about the domain of an ontology. Tab. 2 shows a sample of
the relations considered for the affiliation prediction task, among a total of 77 retrieved
(all composite) relations, together with a measure of their relevance (given by their as-
sociated weight µi, described as either LOWER if µi ≈ 0, and HIGHER otherwise). As
expected, AKP recognizes that authors sharing publications or interests, teaching the
same courses or sharing their office are very likely to be affiliated to the same research
group (unlike e.g. sharing the same academic title).

In this experiment, each AKP run took an average of∼500 seconds on a single core
of an Intel R©CoreTMi7 processor, showing that it can be used in practice for learning
from real KBs.



Table 2: Relations considered in the AIFB PORTAL and the DBPEDIA 3.9 Ontologies
AIFB PORTAL DBPEDIA 3.9

HIGHER µi LOWER µi HIGHER µi LOWER µi

publications−1 ◦ publications title ◦ title−1 vicePresident successor

interest ◦ interest−1 mobile ◦ mobile−1 president predecessor

lecturer−1 ◦ lecturer road ◦ road−1 region ◦ region−1 religion ◦ religion−1

room ◦ room−1 webpage ◦ webpage−1 district ◦ district−1 award ◦ award−1
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AUC-PR results – DBpedia 3.9 Fragment

AKP (S)

AKP (S+C)

SVM (IST)

SVM (WL)

KLR (IST)

KLR (WL)

SUNS

Method AUC-PR (mean ± var.) S S+C
AKP (S) 0.967± 0.003 N

AKP (S+C) 0.845± 0.035 H
SUNS 0.832± 0.019 H

SMSVM (IST) 0.930± 0.011 O
SMSVM (WL) 0.930± 0.011 O

KLR (IST) 0.888± 0.029 H
KLR (WL) 0.927± 0.012 O

Fig. 2: DBPEDIA 3.9 Ontology – Left: AUC-PR results (mean, st.d.) estimated by 10-
fold CV, obtained varying the percentage of labeled examples used for training – Right:
AUC-PR results estimated by 10-fold CV:H/O (resp.N/4) indicates that AKP’s mean
is significantly higher (resp. lower) in a paired Wilcoxon T test with p < 0.05 / p < 0.10

Experiments with the DBPEDIA 3.9 Fragment Similarly to [14], we evaluated the
proposed approach on the task of predicting political party affiliations to either the
Democratic and the Republican party for 82 US presidents and vice-presidents from
DBPEDIA 3.9. The experiment illustrated in [14] uses a small RDF fragment containing
the president and vicePresident predicates only.

In this experiment, we used a real-life fragment of DBPEDIA 3.9 obtained by means
of a crawling process, containing a number of irrelevant and possibly noisy entities and
relations. Following the extraction procedure in [8], the DBPEDIA 3.9 RDF graph was
traversed starting from resources representing US presidents and vice-presidents: all
immediate neighbors, i.e. those with a recursion depth of 1, were retrieved, together
with their related schema information (direct classes and their super-classes, together
with their hierarchy). All extracted knowledge was used to create a KB whose charac-
teristics are outlined in Tab. 1. For efficiency reasons, parameters in the WL kernel were
fixed to d = 1 and h = 1.

In this experiment, the total number of retrieved relations (both simple and compos-
ite) was higher than the number of instances itself: 82 US presidents and vice-presidents
were interlinked by 25 simple relations and 149 composite relations. This differs from
other empirical evaluations discussed in this paper, in which instances are linked by a
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SVM (WL)

KLR (IST)

KLR (WL)
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Method AUC-PR (mean ± var.)
AKP 0.887± 0.014

SUNS 0.724± 0.022 H
SMSVM (IST) 0.735± 0.026 H
SMSVM (WL) 0.887± 0.010

KLR (IST) 0.781± 0.020 H
KLR (WL) 0.900± 0.007

Fig. 3: BGS Ontology – Left: AUC-PR results (mean, st.d.) estimated by 10-fold CV,
obtained varying the percentage of labeled examples used for training – Right: AUC-
PR results estimated by 10-fold CV: H/O (resp. N/4) indicates that AKP’s mean is
significantly higher (resp. lower) in a paired Wilcoxon T test with p < 0.05 / p < 0.10

more limited number of, exclusively composite, relations. For such a reason, we evalu-
ated two variants of the proposed method: AKP (S), which only uses simple relations,
and AKP (S+C), which uses both simple and composite relations.

Experimental results are summarized in Fig. 2. AUC-PR values obtained with AKP
(S) are significantly higher than those provided by the other considered methods (p <
0.05, except for three cases in which p < 0.10). This was not true for AKP (S+C):
relying on both simple and composite relations greatly increased the variance in AUC-
PR results. An explanation for this phenomenon is in the curse of dimensionality [6]: as
the number of considered relations grows, it becomes increasingly difficult to identify
those that effectively encode similarities among examples.

AKP was able to identify which relations are likely to link same party affiliates,
some of which are summarized in Tab. 2: it was able to find that the vice president is
likely to belong to the same party of the president; that representatives covering a role
under the same president are likely to belong to the same party; or that representatives
elected in the same region are likely to belong to the same party. On the other hand,
AKP recognized that sharing the same religion, profession, nationality or awards does
not necessarily mean sharing the same party affiliation.

Experiments with the BRITISH GEOLOGICAL SURVEY Ontology. As in [21], we
evaluated AKP on the Lithogenesis prediction problem in the BRITISH GEOLOGI-
CAL SURVEY Ontology. The problem consisted in predicting the value of the property
hasLithogenesis in a set of 159 named rock units labeled with their corresponding
lithogenetic type. As in [21], we focus on two learning tasks, consisting in the prediction
of two major lithogenetic types: “Alluvial” and “Glacial”.



Results are summarized in Fig. 3. AKP provides significantly higher AUC-PR val-
ues, in comparison with kernel methods using the IST kernel and SUNS (p < 0.05).
The difference between results obtained with AKP and by kernel methods using the WL
kernel was not statistically significant, confirming the effectiveness of the WL kernel
on this specific dataset (see [21]). However, while the statistical models produced with
the WL kernel only have non-trivial geometrical interpretations, those learned by AKP
explicitly represent the importance of relations in the propagation process.

Also in this case, AKP was able to extract relations between rock units that are
likely to link rocks with similar lithogenetic types. For example, among a total of 23
relations (all composite) it emerged that rocks with similar geographical distributions,
thickness and lithological components were likely to share their lithogenetic type, while
their geological theme and oldest geological age were not considered informative.

5 Conclusions and Future Work

In this work, we propose a semi-supervised transductive inference method for statistical
learning in the context of the WEB OF DATA. Starting from the assumption that some
relations among examples in a Web ontology can encode similarity information w.r.t.
a given prediction task (pertaining a particular property of examples, such as a specific
class-membership), we propose a method, named Adaptive Knowledge Propagation, for
i) identifying which relations are likely to link similar examples in the ontology, and
ii) efficiently propagating knowledge across related examples, leveraging the diverse
nature of such relations.

We empirically show that the proposed method is able to identify which relations
are likely to link examples that are similar w.r.t. a given aspect, and that this information
can provide new knowledge about the ontology. We also show that AKP provides signif-
icantly better or competitive results, in terms of AUC-PR, in comparison with current
state-of-the-art methods in the literature. We are currently investigating probabilistic
ways of learning how to propagate knowledge among examples; the use of different
loss functions, optimization methods and regularization terms; and the automatic iden-
tification and selection of more complex relations between examples.
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