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Abstract. The increasing availability of structured machine-processable knowl-
edge in the context of the Semantic Web, allows for inductive methods to back and
complement purely deductive reasoning in tasks where the latter may fall short.
This work proposes a new method for similarity-based class-membership predic-
tion in this context. The underlying idea is the propagation of class-membership
information among similar individuals. The resulting method is essentially non-
parametric and it is characterized by interesting complexity properties, that make
it a candidate for the application of transductive inference to large-scale contexts.
We also show an empirical evaluation of the method with respect to other ap-
proaches based on inductive inference in the related literature.

1 Introduction

Standard reasoning services for the Semantic Web (SW) often rely on deductive in-
ference. However, sometimes purely deductive approaches may suffer from limitations
owing to the relative complexity of reasoning tasks, the inherent incompleteness of
the knowledge bases and the occurrence of logically conflicting (incorrect) pieces of
knowledge therein.

Approximate approaches based on both deductive and inductive inference have been
proposed as a possible solutions to these limitations. In particular, various methods
extend inductive learning techniques to tackle SW representations that are ultimately
based on Description Logics (DL): they perform some sort of approximate reasoning
efficiently by predicting assertions which were not derivable (or refutable) from the
knowledge base and even coping with potential cases of inconsistency, since they are
essentially data-driven (see [14]], for a recent survey). Approximate data-driven forms
of class-membership prediction could be useful for addressing cases such as the one
illustrated in Ex. [T}

Example 1 (Academic Citation Network). Let us consider a knowledge base represent-
ing a Bibliographic Citation Network where papers, venues and authors are linked by
relations such as writtenBy, publishedIn and citedBy. Assuming that specializations of
paper based on the topics are also given, e.g. by means of disjoint classes such as Ma-
chineLearningPaper and DatabasePaper, one may want to ascertain the membership of
an instance (a new paper) to either class. Owing to the Open-world assumption which
is typically made when reasoning with SW representations, this task may not lead to a
definite (positive or negative) conclusion in absence of explicit assertions.
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Fig. 1: Transductive and inductive inference

Bridging the gap caused by missing data can be cast as a statistical learning prob-
lem [18]] for which efficient solutions may be found by adapting techniques proposed
in the related literature. In principle, they may serve for completions even for large and
Web-scale knowledge bases.

A variety of approaches to the class-membership prediction problem have been pro-
posed in the literature. Among the various approaches, discriminative methods pro-
posed so far tend to ignore unlabeled instances (individuals for which the target value
of such class-membership is unknown); however, accounting for unlabeled instances
during learning can provide more accurate results if some conditions are met [3]. Gen-
erative methods, on the other hand, try to model a joint probability distribution on both
instances and labels, thus facing a possibly harder learning problem than only predicting
the most probable membership for any given instance.

Several approaches to the class-membership prediction problem belong to the for-
mer category. They are often based on a notion of similarity, such as the k-Nearest
Neighbors (k-NN) algorithm applied to DL knowledge bases [4]. A variety of simi-
larity (and dissimilarity) measures between either individuals or concepts have been
proposed [5]: some are based on features and objects are described in terms of a set of
them (e.g. see [9]), some on a semantic-network structure that provides a form of back-
ground information (e.g. see [[10]), while some rely on the information content (where
both the semantic network structure and population are considered). Kernel-based al-
gorithms have been proposed for various learning tasks from DL-based representations.
This is made possible by the existence of a variety of kernel functions, either for con-
cepts or individuals (e.g. see [6, 2| [14]). By (implicitly) projecting instances into a
high-dimensional feature space, kernel functions allow to adapt a multitude of machine
learning algorithms to structured representations. SW literature also includes methods
for inducing classifiers from DL knowledge bases using some sort of RBF networks [[7]].

Also, methods based on a generative approach to learning have been proposed. In
[15]], each individual is associated to a latent variable which influences its attributes and
the relations it participates in. A quite different approach is discussed in [13]], which fo-
cuses on learning theories in a probabilistic extension of the ALC DL named CRALC.
Extending our previous work [[12]], we propose a novel transductive inference method to
be applied to class-membership prediction problem with knowledge bases expressed in
standard SW representations. The nature of transductive inference, as opposed to induc-
tion, is illustrated in Fig. [I] Induction essentially generalizes existing data constructing
an intermediate hypothesis (e.g. a classification function) that allows for making pre-



dictions on arbitrary individuals by deduction from the hypothesis (i.e. applying the
induced classifier); transduction aims at propagating information on class-membership
from the individuals for which membership is explicitly known towards those for which
this information is missing (i.e. predicting new assertions), exploiting some notion of
similarity among individuals (with smooth variations). Note that no generalization is
made in this case.

Example 2 (Academic Citation Network, cont’d). It may be quite expensive to induc-
tively build an inductive classifier that, given an arbitrary previously unseen paper, out-
puts the class of papers representing its specific topic. If one assumes that the citedBy
relation can be associated to an indicator that two papers are likely to deal with the
same topics or, similarly, that the same is likely to hold for papers written by the same
author, transductive inference may be exploited to find a topic (i.e. a class-membership)
assignment which varies smoothly among similar papers, and is consistent with the
membership of examples provided by some domain expert.

In this work, we propose a method for spreading class-membership information
among individuals for which this information is neither explicitly available nor deriv-
able through deductive reasoning. This is accomplished by first constructing a semantic
similarity graph encoding similarity relations among individuals. Then, class-membership
information is propagated by minimizing a cost function grounded on a graph-based
regularization approach. The remainder of the paper is organized as follows. In Sect. [2]
transductive inference and the corresponding variant to the classic class-membership
prediction problem are defined. In Sect. [3| we describe the proposed method, the as-
sumptions it relies on, and how it can be used for class-membership prediction also
on larger knowledge bases. In Sect.[d] we provide empirical evidence for the effective-
ness of the proposed transductive class-membership propagation method in comparison
with other methods in literature. In Sect. [5|we provide a brief summary of this work and
about further developments of the proposed method.

2 Preliminaries

In the following, instances are described by features ranging in a certain space X and
their classification with respect a given concept is indicated by labels in Y. In a proba-
bilistic setting, instances are assumed to be sampled i.i.d. from an unknown joint prob-
ability distribution P ranging over X X Y'; generative methods are characterized by
building an estimate Pof P(X,Y) from a given sample of instances, that is used to in-
fer P(Y | z) = P(Y,z)/P(x) for some instance € X whose unknown label is to be
predicted. On the other hand, discriminative methods focus on conditional distributions
to identify arg max, P(y | =), for any given (z,y) € X x Y/, that is an easier problem
than estimating the joint probability distribution.

2.1 Semi-Supervised Learning and Transductive Inference

Classic learning methods tend to ignore unlabeled instances. However, real-life scenar-
ios are usually characterized by an abundance of unlabeled instances and a few labeled



ones. This is also the case of class-membership prediction problem from formal ontolo-
gies: explicit class-membership assertions may be difficult to obtain during ontology
engineering tasks (e.g. due to availability of domain experts) and inference (e.g. since
deciding instance-membership may have an intractable time complexity with knowl-
edge bases described by expressive Web-ontology languages).

Making use of unlabeled instances during learning is commonly referred to in liter-
ature as Semi-Supervised Learning 3] (SSL). A variant of this setting known as Trans-
ductive Learning [18] refers to finding a labeling only to unlabeled instances provided in
the training phase, without necessarily generalizing to further unseen instances, result-
ing in a possibly simpler learning problem [18]]. If the marginal distribution of instances
Py is informative w.r.t. the conditional distribution P(Y" | ), accounting for unlabeled
instances during learning can provide more accurate results [3]]. A possible approach is
including terms dependent on Px into the objective function.

The method proposed in this work relies on the so-called semi-supervised smooth-
ness assumption [3|: if two instances x;,x; € X in a high-density region are close then
so should be the corresponding labels y;,1; € Y. Learning smooth labeling functions,
this can be exploited by transitivity along paths of high density.

We will face a slightly different version of the classic class-membership prediction
problem, namely transductive class-membership prediction. It is inspired by the Main
Principle [[18]: “If you possess a restricted amount of information for solving some
problem, try to solve the problem directly and never solve a more general problem
as an intermediate step. It is possible that the available information is sufficient for
a direct solution but is insufficient for solving a more general intermediate problem”.
In this setting, the learning algorithm only aims at estimating the class-membership
relation of interest for a given training set of individuals, without necessarily being able
to generalize to instances outside this sample. In this work, transduction and induction
differ in the target of the regularization: the latter would target the hypothesis (i.e. the
inductive model), while the former targets directly the results of predictions.

2.2 Transductive Class-Membership Learning Problem in DL

Transductive class-membership learning with DL knowledge bases can be formalized
as a cost minimization problem: given a set of training individuals Indo(K) whose
class-membership w.r.t. a target concept C' is either known or unknown, find a function
f* :Inde(K) — {+1, —1} defined over training individuals and returning a value +1
(resp. —1) if the individual likely to be a member of C' (resp. ~C'), minimizing a given
cost function. More formally:

Definition 1 (Transductive Class-Membership Learning).

- Given:
o a target concept C in a knowledge base K = (T, A);
o a set of training individuals Indc(K) C Ind(A) in K partitioned, according
to their membership w.r.t. C, into the following sets:
* Ind(K) = {a € Ind¢(K) | K [= C(a)} positive examples,
% Ind(K) = {a € Ind¢(K) | £ = =C(a)} negative examples,



* Ind%(K) = {a € Inde(K) | K ¥ Cla) AK ¥ =C(a)} unlabeled
examples (i.e. whose concept-membership relation w.r.t. C' is unknown);
e A cost function cost(-) : F — R, specifying the cost associated to labeling
functions f € F of the form Ind¢(K) — {+1,—1};
- Find f* € F minimizing cost(-) w.r.t. the training individuals in Ind¢ (KC):

/5 arg %12 cost(f).

The function f* determined by a proper transductive class-membership learning
method can then be used to predict class-membership relations w.r.t. the target concept
C for all training individuals (including those in IndOC(IC)): it will return 41 (resp. —1)
if an individual is likely to be a member of C' (resp. —C'). Note that the function is
defined on the whole set of training individuals but it is not a generalization stemming
from them; therefore, possibly, it may contradict class-membership assertions that are
already available (thus being able to handle noisy knowledge). Since Ind¢(K) is fi-
nite, the space of labeling functions F is also finite, and each function f € F can be
equivalently expressed as a vector in {—1, +1}", where n = [Ind¢(K)|.

In order to solve this problem, we propose a similarity-based, non-parametric and
computationally efficient method for predicting missing class-membership relations.
This method is essentially discriminative, and may account for unknown class-membership
relations during learning.

3 Propagating Class-Membership Information Among Individuals

A transductive method based on graph-regularizatiorﬂ [3] is presented allowing for
class-membership prediction with knowledge bases expressed in DL. The method re-
lies on a weighted semantic similarity graph, where nodes represent positive, negative
and unlabeled examples of the transductive class-membership prediction problem, and
weighted edges define similarity relations among such individuals.
Given an instance of the transductive class-membership learning problem (see Def.[I),

the approach proposed in this work is outlined in Alg.[T|and summarized by the follow-
ing basic steps:

1. Given a class-membership prediction task and a set of training individuals (ei-
ther labeled and unlabeled), create an undirected semantic similarity graph (SSG)
where two individuals are linked iff they are considered similar (that is, their class-
membership is not likely to change from one individual to another).

2. Propagate class-membership information among similar individuals (transduction
step), by minimizing a cost function based on a graph regularization approach
(where the graph is given by the SSG) and defined over possible class-membership
relations for training individuals.

UIn brief, regularization consists in introducing additional terms to an objective function to be
optimized to prevent overfitting. These terms add usually some penalty for complexity and
have the form of restrictions for smoothness, bounds on the vector space norm or number of
model parameters.



Algorithm 1 Transductive Class-Membership Prediction via Graph-Based Regulariza-
tion with the Semantic Similarity Graph

Input: Initial class-membership relations Ind;(K), Ind (K) and Ind (K) w.r.t. a concept C
and a knowledge base KC;

Output: f* € F
{Compute the Semantic Similarity Graph (SSG) G, encoding neighborhood relations among
individuals in Ind¢ (K).}
G + semanticSimilarityGraph(Indc (K));
{Minimize a cost function cost defined over a set of labeling functions F. The cost function
is based on the SSG G and enforces smoothness in class-membership relations among similar
individuals as well as consistency with initial class-membership relations. }
f* + argminger cost(f, G, Indc(K));
return f*;

This method can be seen as inducing a new metric, in which neighborhood rela-
tions among training individuals are preserved; and then, performing classic supervised
learning using the new distance.

Example 3 (Academic Citation Network (cont.d)). Assuming that papers written by
the same authors or cited by the same articles (where such information is encoded by
the writtenBy and citedBy roles respectively) have a tendency to have similar domain-
memberships, we can construct a SSG in which each paper is linked to its £ most similar
papers, and rely on this structure to propagate domain-membership information.

In the following, the procedure for building a SSG among individuals in the train-
ing set Ind¢(K) is illustrated. As regards the labeling process of unlabeled training
examples, namely the transductive step, a optimal labeling function f* has to be found
by minimizing a given cost function. For defining a cost over the space of the label-
ing functions f € F, the proposed method (see Sect. aims at finding a labeling
function that is both consistent with the given labels, and changes smoothly between
similar instances (where similarity relations are encoded in the SSG). This is formal-
ized through a regularization by graph framework, using the loss function as a measure
of consistency to the given labels, and a measure of smoothness among the similarity
graph as a regularizer.

3.1 Semantic Similarity Graph

A similarity graph for a set of training examples is a graph where the set of nodes
is given by the training examples and edges between nodes connect similar training
examples with respect to a given similarity measure. Edges are labeled with the corre-
sponding computed similarity values.

A similarity graph can be modeled as a weighted adjacency matrix W (or, briefly,
weight matrix), where W;; represents the similarity value of x; and x;. Specifically,
W is often obtained as a k-Nearest Neighbor (NN) graph [3]] where each instance is
connected to the k£ most similar instances in the graph, or to those with a similarity
value above a given threshold €, while the remaining similarity values are set to 0.



For building such a similarity graph given the individuals in Ind¢(KC), a solution
is relying on the family of dissimilarityﬂ measures defined in [14], since they do not
constrain to any particular family of DLs. Since this measure is a semantic similarity
measures, following the formalization in [3]], we call the resulting similarity graph as
the semantic similarity graph (SSG).

The adopted dissimilarity measure is briefly recalled in the following. Given a set of
concept descriptions F' = {F7, ..., F,} in K and a weight vector w = (w1, ..., wp),
the family of dissimilarity measures d} : Ind(K) x Ind(K) — [0,1] is defined as:

17| ,
dg(xi,xj) = Zwk\ék(mi,xj)\p (1)
k=1

where p > 0, Ind(K) is the set of all individuals in the knowledge base IC, z;, z; €
Ind(KC) and Vk € {1,...,n} results:

0if (K | Fi(z) ANK |= Fi(y)) v
Oz, ) = 1if (K | Fi(z) AK = —F;(y))
uy, otherwise

where uy, can reflect the degree of uncertainty on the membership w.r.t the k-th feature
in the concept committee [14]. We proposed such a measure in our previous work [[12]
for building the SSG among a set of individuals in a knowledge base. Such a dissim-
ilarity measure can be used to obtain a kernel function among individuals by simply
turning it into a similarity measure [[14]].

An alternative approach for obtaining the SSG among a set of individuals in a
knowledge base, by relying more on the corresponding network structure, is by means
of graph and RDF kernels: a kernel provides an (implicitly) mapping for individuals
into an embedding space, by calculating their inner product. A recently proposed ker-
nel for RDF data is the Full SubTree (FST) kernel [[L1]].

Let &k : Ind(K) x Ind(K) — R be a kernel function defined over individuals
in a knowledge base IC. Since k corresponds to an embedding function ¢ mapping
individuals to points in an embedding space, that is Vz;, z; € Ind(K) : k(z;, z;) =
(o(z3), &(x;)), it is immediate to derive the Euclidean distance in the embedding space
among two individuals [16]: ||¢(2;) — ¢(z;)|| = /k(zi, 2:) — 2k(zs, z;) + k(zj, z;).

Two examples of k-NN SSGs among individuals in the AIFB Affiliations ontol-
ogy (representing instances of the concepts Person and Article), which is also used in
empirical evaluations in Sectfd] are shown in Fig. 2] In both cases, a clustered struc-
ture emerges from the graphs. In the case of the SSG modeling the similarity relations
among instances of the Person concept, an highly connected subgraph groups persons
working in the EOrg research group; another connected component (composed by two
highly connected subgraphs) groups persons in the BIK research group; two connected
components group persons affiliated to the CoM research group; and three single con-
nected components group respectively persons with no available affiliation (the larger

2 A dissimilarity measure d € [0, 1] can be transformed in a similarity measure s = 1 — d [3].



(a) AIFB Affiliations (PCI'SOIIS) (b) AIFB Affiliations (Articles)

Fig.2: Semantic Similarity Graphs for individuals representing persons and articles in
the AIFB Affiliations ontology (5-NN graphs obtained using the Full SubTree ker-
nel [[L1] with parameters d = 1 and A = 0.9)

component) and affiliated to the WBS and EffAlg research groups. Also instances of
the Article concept tend to be grouped into different components of their SSG. Simi-
larly to the previous example, articles tend to be grouped according to their research
group affiliation, such as CoM or EffAlg. However, some articles affiliated to different
research group share one or more authors, causing the presence of a few connections
among the different clusters.

In this work, we propose to leverage such emerging structures in class-membership
prediction tasks. The underlying idea is to propagate class-membership information
among similar individuals, assuming that such information tends not to vary within re-
gions of the instance space with an high density of instances (due to the semi-supervised
smoothness assumption discussed in Sect. [2)).

3.2 Transductive Inference via Quadratic Cost Criteria

In this section the transductive step is illustrated. It basically consists in labeling the
unlabeled training examples. For doing this, a optimal labeling function f* has to be
found by minimizing a given cost function (see Def.[I)). For determining a cost over the
space of the labeling functions f € F, the method finds a function that is: 1) consistent
with the given labels; 2) changes smoothly between similar instances (encoded in the
semantic similarity graph). The first issue is addressed by adopting the loss function as
a measure of consistency with respect to the given labels. The second issue is addressed
by regularizing the labeling of the function with respect to the structure of the semantic
similarity graph.



For addressing the consistency issue, the quadratic cost criteria [3} ch. 11] are con-
sidered where the adopted label space {—1,+1} is the one for the binary classification
case. We relax this label space to the interval [—1, +1] that allows to express the con-
fidence associated to a labeling. Consequently, also the labeling functions space F is
relaxed to functions of the form f : Ind¢(K) — [—1, +1]. Labeling functions can be
equivalently represented as vectors y € [—1, +1]"™ where n is the number of the train-
ing examples. Lety € [—1, +1]™ be a possible labeling for n instances. y can be seen
as a (I + u) = n dimensional vector, where the first [ indices refer to already labeled
instances, and the last w to unlabeled instances: y = [y;,¥.]. The consistency of §
with respect to the original labels is then formulated in the form of a quadratic cost:
Siea @i = :)* = 1150~y

To regularize the labellings with respect to the graph structure, the graph Lapla-
cian [3] can be exploited. Let W be the weight matrix corresponding to the similarity
graph G, and let D be the diagonal matrix obtained from W as D;; = Zj ‘W;; namely
by summing the elements in each column of W. Hence, two alternative definitions for
the graph Laplacian can be considered [3]:

— Unnormalized graph Laplacian: L = D — W;
— Normalized graph Laplacian: £ = D7%5LD~%° =1 - D %5WD~0:5,

Following [[1]], a possible graph-based regularization factor is 0.5 Z:L =1 W (9 —
9;)> = yTLy; in alternative it is possible to resort to the normalized graph Lapla-
cian [19} 20], using the slightly different regularization factor y7 L.

For preventing overfitting, an additional regularization term, in the form of ||y||?
(or ||y«][?, as in [19]), can be added. This additional low norm regularizer on y helps
avoiding overfitting and preventing arbitrary labellings in connected components of the
semantic similarity graphs containing only unlabeled instances.

Putting the pieces together, two quadratic cost criteria in the form proposed in
the literature are obtained, namely Regularization on Graph [[1] (RG) and Consistency
Method [19] (CM):

- RG: cost(y) = ||y1 — vil|? + uyTLy + uelly]|%;
— CM: cost(y) = |[31 — yil|2 + 3T Ly + |92

Once the form of the cost function is determined, the minimum for the function has
to be found. As a title of example, a closed form solution for the problem of finding a
(global) minimum for the quadratic cost criterion in RG is showed.
Let S be the diagonal matrix S = diag(sy,...,s,) obtained by setting s, = 1 iff
1 < [ and 0 otherwise. The first order derivative for the case of the cost function in RG
can be written as:
1 Ocost(y)
2 Oy

The second order derivative is a positive definite matrix if € > 0, since L is positive
semi-definite. Hence, setting the first order derivative to 0 leads to a global minimum:

= (S + puL + pel)y — Sy.

¥ = (S + pL+ pel) 'Sy,



showing that ¥ can be obtained either by matrix inversion or by solving a (possibly
sparse) linear system.

In this way, this work leverages quadratic cost criteria to efficiently solve the trans-
ductive class-membership prediction problem. An advantage of quadratic cost criteria is
that their minimization ultimately reduces to solving a large sparse linear system [19, 3],
a well-known problem in the literature whose time complexity is nearly linear in the
number of non-zero entries in the coefficient matrix [[17)]. For large-scale datasets, a
subset selection method is described in [3} ch. 18], which allows to greatly reduce the
size of the original linear system.

4 Empirical Evaluation

In this section, we evaluate several (inductive and transductive) methods for class-
membership prediction, with the aim of comparing the methods discussed in Sect. [3]
with respect to other methods in the SW literature.

Specifically, we empirically compared a set of different methods for the class-
membership prediction task. Those can be partitioned in transductive (Regularization
on Graph [1] (RG), Consistency Method [19]] (CM) and Label Propagation [21] (LP))
and inductive (Soft-Margin Support Vector Machines with L; norm (SM-SVM) and v/I-
Nearest Neighbors). Such inductive approaches have also been discussed in the task of
class-membership prediction in [14]], and previously in the context of inducing robust
classifiers from ontological knowledge bases [8]. Implementations for the evaluated
methods, as well as the dataset used in this work, are available online

4.1 Evaluated Methods

LP is a graph-based transductive inference algorithm relying on the idea of propagat-
ing labeling information among similar instances through an iterative process involving
matrix operations. It can be equivalently formulated under the quadratic criterion frame-
work [3l ch. 11]. More formally it associates, to each unlabeled instance in the graph,
the probability of performing a random walk until a positively (resp. negatively) exam-
ple is found. Support Vector Machine classifiers, on the other hand, come in different
flavors: the classic (Hard-Margin) SVM binary classifier aims at finding the hyperplane
in the feature space separating the instances belonging to different classes, which max-
imizes the geometric margin between the hyperplane and nearest training points. The
SM-SVM relaxes this method, by allowing for some misclassification in training in-
stances (by relaxing the need of having perfectly linearly separable training instances
in the feature space). We adopted this latter solution to handle the lack of perfect linear
separability of the instances belonging to different classes. Note that the aforemen-
tioned methods can be seen as relying on a change of representation: instances of the
prediction problem are represented as points in an embedding space, and implicitly de-
scribed by means of their pairwise Euclidean distances, inner products (as in the case
of kernel-based methods, such as SVM) or neighborhood relations. We evaluated dif-

3 At the address http://lacam.di.uniba.it/~nico/research/ontologymining.html
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Table 1: Results for a 10-fold cross validation obtained when predicting the affiliations
of AIFB staff members to research groups, using the Atomics kernel (and the corre-
sponding dissimilarity measure)

EffAlg Match Omission Commission F1
LP+Atomics 0.53 £0.189 0+0 0.47 £ 0.189 [0.488 £+ 0.217
RG+Atomics  |0.458 + 0.166| 0.01 £ 0.032 [0.532 £+ 0.158|0.405 + 0.194

SM-SVM+Atomics| 0.6 + 0.125 0£0 0.4 +0.125 [0.555 4+ 0.198
V/I-NN+Atomics 0.5+ 0 0+0 0.5+ 0 0.667 £ 0
CoM Match Omission Commission F1

LP+Atomics 0.533 £+ 0.317 0+0 0.467 +0.317| 0.419 + 0.39
RG+Atomics |0.475 + 0.294 0£0 0.525 + 0.294| 0.36 £+ 0.333
SM-SVM+Atomics|0.517 4+ 0.207 0£0 0.483 4+ 0.207| 0.403 + 0.31
V/I-NN+Atomics | 0.5 4 0.167 0+0 0.5+ 0.167 |0.517 + 0.277
BIK Match Omission Commission F1

LP+Atomics 0.502 + 0.116|0.037 £ 0.064| 0.46 + 0.117 |{0.451 + 0.176
RG+Atomics |0.531 + 0.089|0.005 + 0.014|0.464 £ 0.083|0.488 £ 0.147
SM-SVM+Atomics|0.514 4 0.068 0£0 0.486 + 0.068|0.337 £ 0.214
V/I-NN+Atomics [0.522 £ 0.072 0+0 0.478 + 0.072|0.404 £+ 0.125

EOrg Match Omission Commission Fl1
LP+Atomics 0.667 + 0.167 0£0 0.333 + 0.167| 0.65 £ 0.146
RG+Atomics |0.692 + 0.157 0£0 0.308 + 0.157|0.667 £ 0.136

SM-SVM+Atomics|0.692 4+ 0.197 0£0 0.308 + 0.197|0.647 £ 0.286
V/I-NN+Atomics [0.717 & 0.185 0+0 0.283 + 0.185(0.713 £ 0.174

WBS Match Omission Commission Fl
LP+Atomics 0.504 + 0.069(0.012 £ 0.028]0.484 + 0.072{0.489 + 0.081
RG+Atomics 0.512 4+ 0.09 0£0 0.488 + 0.09 (0.512 £ 0.101

SM-SVM+Atomics|0.603 4 0.084 0£0 0.397 4+ 0.084|0.503 + 0.131
V/I-NN+Atomics [0.513 & 0.097 0+0 0.487 + 0.097|0.522 + 0.152

ferent choices for such change of representation, consisting in different choices for the
(dis-)similarity measure used to construct the k-Nearest Neighborhood graph, and the
kernel function. Specifically, we evaluated the following choices:

Atomics — a dissimilarity measure defined in [14] (outlined in Eq. [I) was used to
construct the k-Nearest Neighborhood graph (with p = 2, using all atomic con-
cepts in the ontology as features and weighting each concept with its associated en-
tropy [14]). The corresponding kernel function was obtained as discussed in Sect.

Full SubTree kernel (FST) — a kernel for RDF data proposed in [11]; it was used
to construct a k-NN SSG as shown in Sect. [3] The optimal kernel parameters
(depth, \) were found within the training set using a k-fold cross validation proce-
dure (with & = 10), and varied in {1, 2} and {0.1,0.5,0.9} respectively.

4.2 Evaluation Procedure

Extending our previous results in [12], we are evaluating the proposed approach on a
knowledge base in which a quantity of information is stored in the network structure
rather than in the concept hierarchy. The empirical evaluation involved the metadata
available in the Semantic Portal of the institute AIFB ﬂ The ontology models key con-
cepts within a research community: it comprises 44351 individuals and the Person,

*mttp://www.aifb.kit.edu/web/Wissensmanagement/Portal, as of 21 Feb. 2012
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Table 2: Results for a 10-fold cross validation obtained when predicting the affiliations
of AIFB staff members to research groups, using the Full SubTree kernel (and corre-
sponding dissimilarity measure)

EffAlg Match Omission Commission F1
LP+FST 0.565 + 0.167| 0.09 £ 0.099 [0.345 £+ 0.201{0.611 4+ 0.218
RG+FST  [0.548 £ 0.154| 0.08 + 0.103 |0.372 + 0.187| 0.58 0.2

SM-SVM+FST| 0.6 & 0.125 0+0 0.4 4+ 0.125 |0.587 £ 0.246
VI-NN+FST | 0.57 4+ 0.134 0+0 0.43 £0.134 | 0.65 4+ 0.129
CoM Match Omission Commission F1
LP+FST 0.617 + 0.261|0.083 £ 0.136| 0.3 + 0.201 | 0.563 £ 0.35
RG+FST  |0.583 + 0.157|0.083 £ 0.136(0.333 £ 0.124|0.613 4+ 0.106
SM-SVM+FST| 0.55 £ 0.201 0+0 0.45 £+ 0.201 [0.393 £ 0.298
VI-NN+FST [0.542 + 0.148 0+0 0.458 + 0.1480.575 + 0.217
BIK Match Omission Commission F1

LP+FST 0.536 + 0.107| 0.077 &+ 0.08 [0.386 £ 0.114]0.556 + 0.146

RG+FST 0.534 £+ 0.13 | 0.06 £ 0.053 | 0.406 £ 0.13 | 0.53 &+ 0.206
SM-SVM+FST|0.609 + 0.075 0+0 0.391 4+ 0.075|0.443 + 0.162
VI-NN+FST [0.559 + 0.074 0+0 0.441 + 0.074|0.423 + 0.132

EOrg Match Omission Commission Fl1
LP+FST 0.692 + 0.258(0.075 £ 0.121]0.233 £ 0.222{ 0.65 + 0.388
RG+FST  [0.725 £ 0.249| 0.067 £ 0.11 |0.208 4+ 0.201| 0.69 + 0.33

SM-SVM+FST|0.792 + 0.163 0+0 0.208 4+ 0.163|0.793 + 0.152
VI-NN+FST [0.717 + 0.185 0+0 0.283 + 0.185(0.713 + 0.174

WBS Match Omission Commission Fl
LP+FST 0.583 £ 0.09 | 0.07 4+ 0.044 | 0.347 £+ 0.09 [0.591 + 0.101
RG+FST 0.64 £+ 0.064 [0.033 £ 0.043|0.327 4 0.065|0.606 + 0.058

SM-SVM+FST|0.632 + 0.091 0+0 0.368 4+ 0.091|0.629 + 0.108
VI-NN+FST [0.467 =+ 0.094 0+0 0.533 + 0.094|0.314 + 0.189

Document and Project FOAF concepts (among others) are associated to respectively
509, 4731 and 128 individuals, and roles include affiliation relationships between per-
sons and research groups, authorship relations between persons and documents, and
other knowledge inherent to the academic domain. The knowledge base consists also in
312738 axioms, 49 classes, 96 object properties and 184 data properties, resulting in a
ALEHO(D) knowledge base (encoded in a OWL 2 RL fragment). The learning task,
as defined in [2], consisted in predicting affiliations of AIFB staff members to research
groups, which we denoted as class-membership relations. All knowledge inherent affili-
ation relations to research group was removed from the ontology before the experiment.
As in [11], negative examples were artificially created (in the same number as positive
examples) to mend the lack of training data (due to the Open World Assumption).

A DL reasonerﬂwas employed to decide on the concept-membership of individuals
to query concepts to be used as a baseline. Performance is measured employing the
evaluation indexes proposed in [4], which take into account the specificity deriving
from the presence of missing knowledge in the assertions considered as the baseline:

Match Case of an individual that got the same label by the reasoner and the inductive
classifier.
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Omission Error Case of an individual for which the inductive method could not deter-
mine whether it was relevant to the query concept or not while it was found relevant
by the reasoner.

Commission Error Case of an individual found to be relevant to the query concept
while it logically belongs to its negation or vice-versa.

To provide a term of comparison with methods and results in [2]] and [11], we also
provide results obtained by the F1-score metric (defined as the harmonic mean of pre-
cision and recall). Before evaluating on the test set, parameter tuning was performed
for each of the methods via a k-fold cross validation (k = 10) within the training set,
for finding the parameters with lower classification error in cross-validation. SM-SVM
follows the implementation in [16] pg. 223]: the C' parameter was allowed to vary in
{1074,1073,...,1}. The (u, ) parameters in RG and CM were respectively allowed
to vary in {107%,1072,1,10%,10*} and fixed to 10~%. The number of neighbors for
each node, needed for the construction of the SSG, was allowed to vary in {2, 3,5, 7}.

RG, CM and LP give an indication of the uncertainty associated to a specific label-
ing by associating values in the set [—1, +1] to each node; when such values are =~ 0
(specifically, when the label was in the set [~10~%, 10~%]) we decided to leave the node
unlabeled, so to try to provide more robust estimates (and thus a possibly lower com-
mission error and match rates and higher omission error rates). This may happen e.g.
when there are no labeled examples within a connected component of the SSG.

4.3 Discussion

From this empirical evaluation, it emerged that the Consistency Method (CM) discussed
in Subsect. [3.2] (which we do not report in Tables [[|2] for brevity) may be too conserva-
tive: this was suggested by its low Match rate (always reported lower than 0.1) and high
Omission rate (always reported higher than 0.9). This may be justified by the fact that
its regularizer ||g,|| is not weighted by any term, unlike Regularization on Graph (RG)
(which weights the regularizer ||j|| by means of the term pe). The presence of such a
regularization term influences the results of transductive methods. Inductive classifica-
tion methods such as SVM and k-NN define straight decision boundaries in the instance
space: a classification result may happen by chance.On the other hand, relaxing binary
labels to continuous ones and pulling to 0 labels of unlabeled examples allows to pro-
vide more robust labellings: they will be less likely to be determined by chance, and
more likely to be statistically justified.

Also from our previous work [12], the choice of the SSG strongly affects final
results, and it is likely to be task-dependent: in this case, results obtained by using
the Atomics kernel/dissimilarity measure were significantly worse than those obtained
with the FST kernel. An explaination is that, in this knowledge base, (atomic) concept-
membership relations tend not to carry much information w.r.t. the affiliation prediction
task, while the network structure (exploited by the FST kernel) tends to be informative.
For example, object properties encoding competence fields tend to encode homophily
relations — persons sharing competence fields have a tendency to also have the same
research group affiliation. A significant part of the classification error is caused by the
fact that persons with not much available information other than their research group



affiliation, are now clustered together with nodes where even such information is not
available: this is of course non necessarily correct, since lack of information (given by
the Open World Assumption) on both individuals does not necessarily imply the pres-
ence of a similarity relation between them. A graph kernel might capture similarity
relations in case of full information (such as in the SSGs discussed in Sect. [3)) but might
have problems in case of missing information (such as in this case).

Co-authorship relations to articles, as discussed in Sect.|3| can also encode useful
information; however, analysing the results, it emerges that such information is only
available from the analysis of inverse roles, which have not been considered in our
implementation of the FST kernel. It also emerges that potentially unuseful relations
(such as shared first or last names) have concurred in estabilishing similarity relations
among individuals. This suggests that simple graph or RDF kernel can fail exploiting
the informativeness of potentially useful paths in the ontology’s relational graph.

5 Conclusion and Future Work

This work proposes a method for transductive inference for class-membership predic-
tion in Description Logic knowledge bases. It leverages unlabeled examples by propa-
gating class-membership information among similar individuals in the knowledge base.
The proposed method relies on graph regularization using quadratic cost criteria, whose
optimization can be reduced to solving a (possibly sparse) linear system. In this work,
we assumed information propagates homogeneously within the similarity graph defined
over a set of individuals in the knowledge base. However, real world ontologies describe
domains characterized by heterogeneity, either on individuals or on relations among
them. For example, persons in the AIFB Affiliations ontology (see Sect. ) can belong
to different categories (e.g. according to their contract type) and be linked by multi-
ple types of relations (for example, given by co-authored articles or shared competence
fields), which can have a variable level of informativeness w.r.t. a specific prediction
task. Considering multiple similarity measures boils down to defining a cost function
with multiple graph-based regularizers, with the side effect of an increased number
of parameters. In future work we aim at extending our approach to include multiple
similarity relations among different types of instances, and working on methods to effi-
ciently learn the regularization parameters.
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