Rank Prediction for Semantically Annotated Resources

Pasquale Minervini, Nicola Fanizzi, Claudia d’Amato, Floriana Esposito
Dipartimento di Informatica, LACAM Laboratory
Universita degli Studi di Bari “Aldo Moro”
Via E. Orabona, 4 - 70125 Bari - Italy

{ pasquale.minervini, nicola.fanizzi, claudia.damato, floriana.esposito } @uniba.it

ABSTRACT

In the context of semantic knowledge bases, we tackle the
problem of ranking resources w.r.t. some criterion. The pro-
posed solution is a method for learning functions that can
approximately predict the correct ranking. Differently from
other related methods proposed, that assume the ranking
criteria to be explicitly expressed (e.g. as a query or a func-
tion), our approach is data-driven, being able to produce a
predictor detecting the implicit underlying criteria from as-
sertions regarding the resources in the knowledge base. The
usage of specific kernel functions encoding the similarity be-
tween individuals in the context of knowledge bases allows
the application of the method to ontologies in the standard
representations for the Semantic Web. The method is based
on a kernelized version of the PERCEPTRON RANKING algo-
rithm which is suitable for batch but also online problem
settings. Moreover, differently from other approaches based
on regression, the method takes advantage from the under-
lying ordering on the ranking labels. The reported empirical
evaluation proves the effectiveness of the method at the task
of predicting the rankings of single users in the Linked User
Feedback dataset, by integrating knowledge from the Linked
Open Data cloud during the learning process.

1. INTRODUCTION AND MOTIVATION

Ranking a set of individual objects, as the result of a rela-
tion sought between them and their relative ranks, is a fun-
damental task in many research fields with widespread ap-
plications. In a typical scenario, a user may need to rank re-
sources (e.g. documents) returned as a result of search/query
answering /retrieval (from a corpus, a database, etc.). An
example of ranking related to relevance-feedback mecha-
nisms is the task known as collaborative filtering which aims
to detect the relevance of information items based on rank-
ings previously acquired from a community of users. This
ranking cannot depend entirely on a notion of relevance ex-
pressed in terms of the knowledge base semantics, but it
may include users in the loop as providers of examples of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

ranked resources according to their own relevance criteria
(especially when these would be hard to formally express).
In this way a sort of group intelligence can emerge.

There are a plethora of important Web applications that
require solutions for this general problem. For example, one
such application may want to associate every client of an on-
line shop (for songs, movies, books, etc.) with a ranking on
the products, depending on a) previous rankings of the client
on other products (along with some background knowledge
on the relationships among the products), or b) on previ-
ous rankings of other clients on the same product (along
with background knowledge on the relationships among the
clients), or ¢) on both options. Such a ranking may be use-
ful for showing a client the top-ranked products as buying
suggestions when the client is browsing the online shop. In
a similar way, the members of a social network may be as-
sociated with a ranking on, e.g., their interests.

Solving ranking problems may turn out to be a hard task,
since it is generally difficult to define a general and precise
measure of the relevance when this criterion cannot be ex-
pressed with general logical axioms but rather in the form
of multiple relevance orders, preferences, etc.. Still it may
be possible to (partially) elicit the required criterion by in-
duction, exploiting imprecise information that can often be
expressed by means of examples of rankings for a limited
number of resources.

In general, learning to rank is more difficult than other re-
lated tasks such as learning to classify. The problem can be
cast in the framework of learning from examples. Given pre-
viously ranked instances, the aim is to learn a function which
can be used to assign a meaningful rank to new incoming
unranked instances. Essentially, previous (partial) pointwise
indications of the intended relevance of some resources (e.g.
ratings, feedback from users) w.r.t. some criterion have to be
exploited. Ranking methodologies proposed in the context
of Information Retrieval from textual corpora settings can-
not be transposed straightforwardly to the Semantic Web
context that leverages formal descriptions of the available
resources (e.g. see [7]). Their logic-oriented nature requires
specific approaches to the problem that can comply with the
underlying semantics of the data.

While exploiting the structure of the descriptions (e.g.
see [1]) represents a partial solution to the problem which
cannot fully exploit the richness of the underlying logic rep-
resentation, purely logical methodologies investigated in a
few related works may fall short in terms of scalability. For
example, the problem of semantic matchmaking is tackled
by means of non-monotonic inferences in Description Log-

ics (henceforth DLs) such as concept abduction and con-
traction [9]. Further drawbacks come from the language-
dependence of some of the required operations and the com-
plexity of the related inference services with the growing
expressiveness of the DL language. Other approaches tackle
the problem by explicitly representing the preferences in the
knowledge bases with conditional statements for ranking ob-
jects in ontologies [15], or, conversely, recur to fuzzy exten-
sions of the standard DL languages [16] to offer alternate
ways for finding the best (top k) answers to queries [18].

Statistical learning has been shown to provide valid tech-
niques to produce alternative models that enable forms of
inductive classification in DLs [5, 8, 3, 10]. Also ranking
can be performed inductively, casting the problem as learn-
ing a suitable function from a training sample of ranked
data. Decomposing the problem into multiple class learning
problems would not exploit efficiently the inherent ordering
in the ranks and it may require a further level of approxima-
tion in the combination of multiple classifiers. Ideally, even
the number of ranks need not be specified, though typically
the training data comes with a relative ordering, specified
by the assignment to one of an ordered sequence of labels.

‘We propose a method based on kernels that is able to learn
ranking functions from examples of ranked individuals w.r.t.
some (potentially unknown) target criterion in terms of a DL
knowledge base. This function can be then used to predict
a correct rank (or a close approximation) for newly acquired
individuals. The algorithm is computationally efficient and
can work in an online fashion, so that it may improve the
quality of the ranking function as long as new ranked in-
dividuals are made available. The paper presents also the
outcomes of a thorough experimental evaluation with real
ontologies where the rankings used for the training phase are
determined using suitable automated methods. This evalu-
ation proves the effectiveness of the method in terms of a
standard measure for this task (average loss).

In this paper, the basics of semantic knowledge bases rep-
resented in DL are recalled (see next section). Then, after
presenting the essentials of the kernel methods in Sect. 3
and a specific family of DL-kernels, a definition of the rank-
ing problems is formalized and a kernel-based method for
learning ranking functions is described in Sect. 4. Given its
implementation, we can also present in Sect. 5 an experi-
ment on a real-world ontological knowledge base.

2. PRELIMINARIES

For brevity, the basics of the representation utilized are
informally recalled with no claim to exhaustiveness (see [2]
for a thorough reference).

The building blocks are in a vocabulary (N¢, Nr, N1) made
up, respectively, of a set of concept names (classes), a set of
role names (properties) and a set of individual names (re-
sources). A DL language provides specific constructors and
rules for expressing complex descriptions when applied to
the symbols in the vocabulary with a particular syntax and
semantics that has a correspondence with First-Order Logic
(and its extensions).

A knowledge base K = (T, A) will be considered as com-
posed by a TBox T and an ABox A. T is a set of axioms
a C §, where' a = C € N¢ (resp. a = R € Ng) is an atomic

!'Even more complex inclusion axioms are generally also ad-
mitted, where « is not bound to be atomic.

name and 0 is a legal concept (role) description constructed
on concept and role names by means of the syntax of the
operators allowed by the specific DL language.

A peculiar feature of these representations is the under-
lying Open World Assumption (OWA) made on their se-
mantics, which is particularly convenient for the Semantic
Web. Formally the semantics is defined in terms of interpre-
tations. An interpretation T = (AT,.T) assigns the meaning
to these formulz via -T mapping the names to the corre-
sponding element based on the domain AZ: resp. concepts
C? C AT, binary relations RT C AT x A%, and individuals
af € AT. An interpretation Z satisfies (is a model of) an
axiom? a C § iff o C 6. The ABox A contains assertions
(ground axioms) regarding the world state, e.g. C(a) and
R(a,b) meaning that o € CT and (a”,b%) € R”. Ind(A)
will denote the set of all individuals occurring in the ABox.
Normally, the interpretations of interest are limited to the
models of the knowledge base, i.e. those that satisfy each
axiom (assertion) therein.

For the targeted problem we will exploit instance check-
ing, that roughly amounts to deciding whether an individ-
ual a is an instance of a concept C [2]: K = C(a). The
inherent incompleteness of the knowledge bases under an
open-world semantics may cause the impossibility to ascer-
tain the class-membership w.r.t. a query concept and to its
negation through instance-checking. The related retrieval
service may be exploited to find the sets of individuals oc-
curring in the ABox that can be proven to belong to a given
concept.

3. LEARNING WITH KERNELS IN DL

A learning task requires finding an inductive model which
can be adopted by a decision procedure to predict, given
an input instance, the correct value for the function to be
approximated both efficiently (evaluating a simple model)
and effectively (close approximation). Kernel methods [17]
are particularly well suited because the learning algorithm
(inductive bias) and the choices of the kernel function (lan-
guage bias) are almost completely independent. Discover-
ing linear relations has a long tradition of research, with
algorithms that are both efficient and well understood. A
computational shortcut makes it possible to represent lin-
ear models efficiently in high-dimensional spaces to ensure
adequate representational power: a kernel function. Differ-
ent kernel functions may be related to different hypothesis
spaces. Hence, the same kernel machine can be applied to
different representations, provided that suitable kernel func-
tions are available.

Kernel methods are characterized by two aspects:

e data items are embedded (implicitly) into a vector
space, the feature (embedding) space; this depends on
the specific data types and domain knowledge expected
for the particular data source;

e linear models are sought among the images of the data
items in the feature space; the algorithms are imple-
mented in such a way that only the inner products of
the embedded points are needed and the products can
be computed efficiently directly from the original data
items using a kernel function.

2Definitions, denoted o = §, are axioms that are satisfied
by some Z when o = §7 holds.

The learning component is general-purpose, robust and also
efficient, requiring an amount of computational resources
that is polynomial in the size and number of data items
even when the dimension of the embedding space grows ex-
ponentially. An algorithm may be adapted to structured
spaces (e.g. trees, graphs [17]) by merely replacing the ker-
nel function with a suitable one. Examples of the target
concepts are to be provided to the learning algorithm to
produce a definition for the target function in the form of a
linear decision function depending on a tuple of weights.

3.1 Kernel Methods Essentials

Many learning problems can be reduced to the approxi-
mation of linear functions. In a simplified setting, consider
an input space X of training instances (e.g. represented by
binary or real tuples) extended with an additional feature
y € Y indicating an implicit target value: (z,y) € X XY
(these are named examples). This target value may repre-
sent the membership w.r.t. a class (classification problem)
or the value of a function to be predicted (regression or
ranking problem). We will consider learning from a sample
S C (X xY) of N examples.

A prototypical algorithm is the PERCEPTRON, a proce-
dure for learning the coefficients of linear classifiers (in a
classic setting where Y = {—1,+1} contains membership
values). For each incoming training example (z;,y;), the
algorithm predicts a value according to the decision func-
tion g(hw(x;);w) based on the linear model h,, determined
by the current choice of weights w. The algorithm com-
pares the outcome §; = g(hw(z:); w) with the correct label
y; which is known for the examples considered during the
training phase. On erroneous predictions, the weights w are
revised depending on the examples that provoked a mistake.

However, simple and efficient methods for this setting ap-
ply only to linearly separable problems. This issue may often
be circumvented by resorting to the kernel trick, that essen-
tially consists in finding a mapping ¢ of the instances onto
a suitable feature space, allowing for the linear separation
between examples belonging to different classes. The em-
bedding space has likely many more (even an infinite num-
ber of) dimensions. However, the mapping is never explic-
itly performed; a kernel function, corresponding to the inner
product of the transformed vectors in the new space, ensures
that an embedding exists [17]: k(zi, z) = () - P(z).

In a kernel method, each training instance x; is thought
as generating a local density function - the kernel (-, ;) - of
its own that assigns a probability to each point in the space.
The kernel function depends on some distance d(zx, z;) from
z to the instance z;. The density estimate as a whole is
just the normalized sum of all the local kernel functions:
P(z) = (1/N) 3, cs k(x,2i), where S is the local set of
instances considered. Learning is carried out by consider-
ing a weighted combination of all the predictions related to
each training example. The weight of the i-th example for a
query instance z is given by the value of the kernel x(z, ;)
(weighted vote). Kernel machines are not limited to learn-
ing classifiers only but can be used also for solving regression
and ranking problems using similar methods [17].

3.2 DL-Kernels

The choice of kernel functions is very important as their
computation should be efficient enough for controlling the
complexity of the overall learning process. Although some

kernels have been proposed for instances expressed in First
Order Logic fragments, only a few kernel functions for indi-
viduals have been proposed in the literature.

In this work, we resort to a set of general kernels for indi-
viduals in DL knowledge bases, stemmed from those defined
n [10], that exploit a notion of similarity in the context of
a set of concepts:

DEFINITION 3.1 (DL KERNELS). Given a knowledge base
K =(T,A) and a set of concept descriptions F = {F;}i*;
defined in terms of K, the kernel function based on F and
p € Ry, is a mapping ki : Ind(A) x Ind(A) — [0,1] defined
as follows:

m 1/p
Va,b € Ind(A) kb(a,b) = {Z (ki(a, b))p}

where Vi € {1,...,m} the i-th simple kernel is defined:
ki(a,b) = 7 (@) (b) +7; (a)m; (b)
with 7 (z) = Pr(F;(z)) and 7, (z) =~ Pr* (= Fi(z)).

As feature concepts Fj, the very set of the (primitive) con-
cepts (possibly weighed with respect to their ability to dis-
cern individuals) in K may be considered. Alternatively, an
ad hoc learning algorithm [10] which learns the best concept
descriptions with respect to a given discernibility criterion
could be employed. For a generic individual = in IC, the
value of the function 7 (z) (resp. 7; (z)) approximates the
probability value that x is instance of F; (resp. of —F}).
Specifically, for a given individual z, if K = F;(z) (resp.
K | —=F;(z)) occurs then 7 () = 1 and 7; () = 0 (resp.
77 (x) = 1 and 7 (z) = 0). In some cases, because of the
OWA, the class-membership (and non-membership) of some
individual = w.r.t. F; cannot be ascertained (models can be
constructed both for F;(x) and for —F;(z)). Since both pos-
sibilities are open, an intermediate value u; is assigned to
reflect such uncertainty. This value could be set equal to 0.5
for expressing total uncertainty or, for estimating the prob-
ability that x may belong (not belong) to the extension of
F; (—F;), the sizes of the retrieval sets of F; and its comple-
ment w.r.t. the current ABox can be exploited. Specifically,
Pr(F;(z)) = |retrieval(F;)|/|Ind(A)| (resp. Pr(=F;(z)) =
[retrieval(—F3)|/|Ind(A)|) where Ind(A) represents the set of
all individuals occurring in A and retrieval is the retrieval in-
ference procedure [2] that assesses the individuals of K that
are instances of F;. Of course statistical approximations
would fall short in case a few individuals were available.

The rationale for these kernels is that similarity between
individuals is determined by their similarity w.r.t. each con-
cept in a given committee of features. Two individuals are
maximally similar w.r.t. a given concept F; if they exhibit
the same behavior, i.e. both are instances of the concept
or of its negation. Conversely, the minimal similarity holds
when they belong to opposite concepts.

4. KERNEL-BASED RANKING FOR DL

In general, learning to rank may be described as the fol-
lowing task. Given a set of ranked examples (z,y), where
each individual object x in some input space X is assigned
with a label y from an ordered set Y, the goal is to predict
the rank for new unlabeled instances (z,).

This could be tackled as a regression or classification prob-
lem by treating the ranks as real-values or the assignment
to a particular rank value as a classification.

Formally:

DEFINITION 4.1 (RANKING PROBLEM). Let X be a set
of individual objects and Y be a set of ranks, endowed with
a total order relation <y, such that one of the following
cases is considered:

e [Y|=reN
e 3 bijection f:Y — RT

(discrete case)
(continuous case)
A ranking problem is specified as follows:

given: a sample set S = {(z1,y1),...,(@n,yn)} CA XY,
where y; € Y is the rank of x; € X

find: @ ranking function p: X — Y that induces a relation
=, over X that is a partial (resp. total) order.

The simplest way to define the set of ranks in the continuous
case is Y = R™ or, in the other case, Y = {1,...,r}.

In this setting, we may say that x; is preferred over z;,
denoted z; <, z;, iff p(z;) <y p(x;). The objects z; and x;
are incomparable (cannot be ordered) when y; =, y;. In the
categorical (discrete) case, one may consider that the (par-
tial) ordering partitions the input space into r equivalence
classes.

A reduction to a classification problem in the discrete case,
would not make use of all of the available information; on
the other hand the flexibility inherent in the ordering re-
quirement is the price for the reduction to regression. Con-
versely, in a regression setting a specific metric is required
to convert the ranks into real values. This may be diffi-
cult in general and makes regression more sensitive to the
rank representation rather than to their ordering [12]. It is
therefore preferable to treat ranking as a problem in its own
right and design specific algorithms able to take advantage
of the specific nature of that problem [17]. This can be a by-
product of the adoption of specific kernels and the related
embedding.

The discrete case setting can be transposed into the prob-
lem of predicting the relative ordering of all possible pairs
of examples, hence obtaining two-class classification prob-
lems. The drawback of this approach would be the extra
computational effort required since the sample size for the
algorithm grows quadratically with the number of examples.
If, on the other hand, the training data is given in the form
of all relative orderings, a set of ranks can be generated as
equivalence classes of the equality relation with the induced
ordering.

Preliminarily, we will assume an implicit kernel-defined
feature space with the corresponding feature mapping ¢ so
that ¢(z;) is in R™ for some n, 1 <n < co.

A linear ranking rule function embeds the input data into
the real axis by means of a linear function in the feature
space f(z) = (W-¢(z)). The real-value can be then converted
to a rank by means of an r-dimensional vector of thresholds
g (to be learned) with the 6,’s ordered according to the
underlying relation on Y, i.e. y < ¢ implies 6, < 6,/.

DEFINITION 4.2 (RANKING RULE). Given the thresholds
g and a linear function f, the ranking rule is defined by:

=

Ve e X p(x;w,0) =min{y €Y | f(z) < 0y}

Algorithm 1 function DL-RANK(TSet, @, 6)
Input:

TSet = {(x¢,yt) }+=1,..., N set of training examples
Output:

a € RV: coefficients for the ranking function

feR"™: ranking thresholds

1: &4 0,0+« 0, 0, + oo {initialization}
2: repeat

3: loss + 0

4: fort<1to N do

5: g+ p(xe; @, 0) {prediction using Eq. 1}
6: if § # y¢ then

7 update loss with |y: — |

8: at<—at+yt —9Y {weights update}
9: for j + min(g,y:) to max(g,y:) — 1 do

10: 0; —0;—1 {thresholds update}
11: end for

12: end if

13: end for

14: until finished(loss)

—

15: return (&, 0)

or, in a dual representation, given the kernel function k:

=

N
p(z;d,0) = min {y €Y | flx)= Zam(w,xi) < Qy} (1)

where @ = SN aip(a;).

It must be assumed that a very large value 6, corresponds
to the largest rank r to ensure the minimum always exists.

A ranking rule partitions X into r + 1 equivalence classes
corresponding to parallel bands orthogonal w.r.t. « and
delimited by the thresholds 6;. Depending on the kernel
function adopted k one may obtain linear or even non linear
intervals. Note that the classes need not be equally spaced.
Moreover, the objects within each class can further be or-
dered also by the value of the function f(z).

4.1 The DL-Rank Algorithm

In order to learn the parameters, we adapted the PRANK
algorithm, a kernelized version of the PERCEPTRON algo-
rithm for RANKING instances expressed as feature vectors [6].
The extended version DL-RANK is defined by rounds (iter-
ations) of the function described in Alg. 1.

The objective of the algorithm is to find a vector of weights
& which can successfully project all the instances in X onto
the r subintervals defined by the vector of thresholds é: ie.
the subinterval for the j-th rank is 6;_1 < f(z) < 6;.

The algorithm presented in Alg. 1 may be used in an on-
line fashion, processing the incoming training instances as
they are made available. The algorithm continues the iter-
ations starting over until some final condition is met, e.g.
a depending on a maximal number of iterations or on the
performance on the training instances in terms of average
loss (see the next section).

At round ¢ the first step is to predict the rank g (line
4) for a given instance x: by selecting the smallest rank y
such that f(x) < 6y. If the prediction g is not the correct
rank then the weight vector and the threshold vectors are
updated. The rationale is that updating &' and @* in this
way has the effect of moving the threshold of the desired rank
9;-“ and the updated predicted rank f(z:) closer together.
This procedure is repeated for all the threshold in the wrong

subinterval.

The inner update loop is nested in the outer loop which
repeats the optimization of weights and thresholds until a
satisfactory rate of training examples is correctly ranked by
the resulting function (low or null average loss).

In order to use the ranking algorithm with objects de-
scribed in a DL knowledge base K, we will consider a train-
ing set of T'Set C Ind(A). Then the related Gram matrix
K of the kernel values can be obtained by choosing a ker-
nel k in the family defined in Def. 3.1, k = k;, based on a
context F of concepts (for example, the leaf concepts of the
subsumption hierarchy in 7°) and a choice of p (e.g. 2).

S. EXPERIMENTS

The DL-RANK system implements the training method
and ranking procedure explained in the previous sections,
adopting the square kernels of the family (i.e. those with
p =2). We aim at directly evaluating the applicability (e.g.
in terms of scalability and prediction accuracy) of the pro-
posed method. For this reason, we evaluated the method
on a real knowledge base, namely the Linked User Feedback
(LUF) dataset®. LUF is part of an effort to semantically
publishing and retrieving user-generated feedbacks (such as
ratings, comments and tags); as part of this effort, ratings
from the Linked Movie Data Base* (LinkedMDB) were pro-
cessed and integrated into the CKAN?® dataset, which is part
of the Linked Open Data (LOD) cloud®.

To evaluate the effectiveness and feasibility of our ap-
proach, it was applied to a film ranking prediction task:
given a sample of ratings provided by users, the system in-
duces a ranking rule to predict ratings for unranked movies.

In order to leverage the large amount of structured knowl-
edge available through the LOD cloud, we extracted a frag-
ment of the DBpedia [4] knowledge base related to movies
ranked in the LUF dataset.

For this task, we followed the procedure described in [13]:
starting from resources representing movies, a search was
performed in the RDF graph (with recursion depth 1), and
up to 1000 superclasses were extracted for each reached ob-
ject. Such an extraction process resulted in an OWL 2 EL
fragment containing 4789 concepts, 59 object properties and
3082 individuals. In the following, we present the experi-
mental setting and discuss the outcomes.

Experimental Setting

We empirically evaluated the effectiveness of the proposed
approach by testing its accuracy in predicting movie ratings
from the LUF dataset. In this dataset, each movie, repre-
sented by its LinkedMDB resource, is related by means of
annotations to a set of rankings, that in turn contain the
related user and rating value. Therefore, each rating can
be considered as a triple (u, m,r), where u (resp. m) is an
individual representing a user (resp. a movie), and r € N
is a rating. Ratings range in the set {1,...,5}. The his-
togram in Fig. 1 depicts the distribution of the number of
the ratings per user. For each user, represented as an indi-

*http://thedatahub.org/dataset/
linked-user-feedback
‘http://www.linkedmdb.org/
*http://ckan.org/
Shttp://lamboratory.com/2011/12/17/
linked-user-feedback/

Distribution of the Number of Ratings per LUF User

2] —
Q
m(")
z 8-
:)O
-
2 g | /
g o
<
-
g 3
$ o
=}
T o
r 2 -
(=) [T T T T T 1

0 20 40 60 80 100 120

Number of Ratings per LUF User

Figure 1: Distribution of the number of ratings per
user in the Linked User Feedback dataset.

vidual in the OWL fragment, a k-fold cross-validation was
performed. To emulate the setting of a real-life scenario,
where scalability and low time complexity are fundamental,
the algorithm was trained in an online fashion: by avoiding
it to loop (finished predicate in line 14 set to always return
True), Alg. 1 becomes equivalent to the kernel perceptron
ranking algorithm (e.g. see [17, p. 262]).

Beside the proposed kernel, we also evaluated our ap-
proach employing another kernel function in the literature,
namely the Full Subtree Kernel [14]. When showing the ex-
perimental results, we indicate this kernel with kj,, whereas
we denote as kr the kernel described in sect. 3. As for the
parameters for kr, the maximum subtree depth is set to
2, and the discount A is set to 1.0 (as for [14]). We also
attempted to transform the obtained kernels using the ap-
proach described in [11]; the following two transformations
were considered, by making use of the Polynomial and Gaus-
sian kernels, defined respectively as follows:

d kp(wh'rj) = ((wi>wj> + 1)q7q eN;

o ka(zi,x;) = exp(—||lzi — 2;|3/20°),0 € Ryy,
with ||z; — ;|3 = (4, x:) — 2{zs, ;) + (x;,x;). A cross-
validation procedure (e.g. a k-fold with k£ = 10) within the
training set was used to find the kernel leading to the most
accurate results. The g parameter for the polynomial kernel
was varied in the range {1,...,9}, while the o parameter for
the Gaussian kernel was varied in {107%,107%,...,10*}.
The kernel discussed in Sect. 3 requires a set of concept de-
scriptions F. We evaluated the impact of two choices for such
a set: using all the atomic concepts in the ontology (leading
to |F| = 4789), which we label with AC; and using all the
subclasses of three concepts semantically representing films,
namely http://dbpedia.org/ontology/Film, http://dbpedia.
org/class/yago/Movie106613686 and http://schema.org/Movie
(which led to |F| = 675), which we label FSC. A standard
OWL reasoner (PELLET v. 2.3.0) was employed for comput-
ing the instance checks.

Results

Tab. 1 reports the experimental results in terms of the Mean
Absolute Error (MAE) and the Root Mean Squared Error
(RMSE) indices. From results, it emerges that projecting

Table 1: MAE and RMSE results for each kernel

function (Mean + Standard Deviation pairs).

MAE RMSE

kr (AC) T.089 £ 0.737 | 1.243 £ 0.754

kp (AC)+Gaussian | 1.088 +0.718 | 1.25 + 0.739

kp (AC)+Polynomial | 1.239+0.85 | 1.407 + 0.864
MAE RMSE

kr (FSC) T.088 £ 0.738 | 1.243 £ 0.754

kp (FSC)+Gaussian | 1.076 +0.714 | 1.238 + 0.737

kr (FSC)+Polynomial | 1.229 +0.837 | 1.395 + 0.851
MAE RMSE

kL T.726 £ 0.850 | L.921 £ 0.862

kr+Gaussian 1.083 +0.731 | 1.239 + 0.748

k1, +Polynomial 1.758 +0.852 | 1.953 + 0.857

ness of the proposed approach on a real-life dataset of movie
ratings. In the near future, it can be foreseen that more
knowledge bases containing informations about the ranking
of resources w.r.t. some typical usage will be available (e.g.
semantically annotated repository of music or movies, etc,
with ratings contributed by the users). This will allow the
construction of more standard datasets, similarly to related
research on ranking based on textual knowledge. The on-
going extensions of the work regard the enhancement of the
presented approach by averaging the models obtained in the
various update loops according to standard methods, such
as bagging or Bayes point estimation. Besides we are inves-
tigating alternative approaches to either content-based or
collaborative ranking prediction.

the objects (in this case, individuals representing movies in
aranking task) into a higher-dimensional space, led to better
results in the discussed online learning task (adopting each
user’s mean rating as a predictor led to MAE and RMSE
values of, respectively, 2.54 & 0.79 and 2.66 + 0.75). When
used in their basic (linear) form, kr led to better results
than kr, either with committees composed by all atomic
concepts (AC) or all atomic subconcepts of concepts repre-
senting films (FSC). A reason for this can be attributed to
a number of features considered by the latter kernel (given
by the characteristics of the intersection subtree) which are
not informative w.r.t. the given ranking task. Also, results
suggest that a careful choice of the committee of feature
concepts can significantly reduce the complexity of calcu-
lating the kernel matrix without degrading the results. We
also performed a first empirical evaluation of the adoption
of other (batch) ranking methods, not fully reported here
for brevity: an one-versus-all ensemble of binary Support
Vector Machine (SVM) classifiers and the Soft Ranking al-
gorithm, following the implementations respectively in [17,
p. 223, 262]. However, in many occasions it was not pos-
sible to find a solution for the aforementioned optimization
problem: this factor, jointly with the computational time
complexity of traditional large-margin approaches (standard
SVM training is O(m?) in general), led us to adopt an online
solution.

6. CONCLUSIONS AND OUTLOOK

The main contribution of this work concerns inductive
solutions to the problem of ranking individual resources in
DL knowledge bases. Since it is difficult to define a ranking
of (retrieved) resources with a general (logical) encoding of
preferences, a novel statistical method for learning ranking
functions from examples was introduced. The advantages of
method based on kernels is that complex (non-linear) ordinal
relations can be discovered in the space of individuals, while
working on linear models (in the embedding space) with the
consequent efficiency. Even more so, the method is suitable
for an online utilization, improving the performance of the
ranking rule as new ranked instances are available.

Due to the lack of specific testbeds for these specific rep-
resentation in the related literature, we devised an ad-hoc
evaluation method for ranking task: by using the Linked
User Feedback (LUF) knowledge base (which is actually part
of the LOD cloud), we were able to evaluate the effective-

g

(2]

(3]

6]
(7]

(8]

(9]

(10]
(11]
(12]
(13]

[14]

(18]

(16]

(17]

(18]

B.RAEGFHEI%EZgg. alaschek-Wiener, I. Arpinar,

C. Ramakrishnan, and A. Sheth. Ranking complex
relationships on the semantic web. 9(3):37-44, 2005.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and

P. Patel-Schneider, editors. The Description Logic Handbook.
Cambridge University Press, 2003.

V. Bicer, T. Tran, and A. Gossen. Relational kernel machines
for learning from graph-structured rdf data. In Proc.of the 8th
Extended Semantic Web Conference, ESWC 2011b, volume
6643 of LNCS, pages 47-62. Springer, 2011.

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,

R. Cyganiak, and S. Hellmann. Dbpedia - a crystallization point
for the web of data. Web Semant., 7(3):154-165, Sept. 2009.
S. Bloehdorn and Y. Sure. Kernel methods for mining instance
data in ontologies. In K. Aberer et al., editors, Proceedings of
the 6th International Semantic Web Conference, ISWC2007,
volume 4825 of LNCS, pages 58-71. Springer, 2007.

K. Crammer and Y. Singer. Pranking with ranking. In

T. Dietterich et al., editors, Advances in Neural Information
Processing Systems 14, pages 641-647. MIT Press, 2001.

L. Dali, B. Fortuna, and J. Rupnik. Learning to rank for
personalized news article retrieval. Journal of Machine
Learning Research - Proceedings Track, 11:152-159, 2010.

C. d’Amato, N. Fanizzi, and F. Esposito. Query answering and
ontology population: An inductive approach. In Proc. of the
5th European Semantic Web Conference, ESWC2008, volume
5021 of LNCS, pages 288-302. Springer, 2008.

T. Di Noia, E. Di Sciascio, and F. Donini. Semantic
matchmaking as non-monotonic reasoning: A description logic
approach. Journal of Artificial Intelligence Research,
29:269-307, 2007.

N. Fanizzi, C. d’Amato, and F. Esposito. Induction of robust
classifiers for web ontologies through kernel machines. J. Web
Sem., 11:1-13, 2012.

M. Génen and E. Alpaydin. Multiple kernel learning
algorithms. J. Mach. Learn. Res., 12:2211-2268, July 2011.

E. Harrington. Online ranking/collaborative filtering using the
perceptron algorithm. In T. Fawcett and N. Mishra, editors,
Proceedings of the 20th International Conference on Machine
Learning, ICML2003, pages 250-257. AAAT Press, 2003.

S. Hellmann, J. Lehmann, and S. Auer. Learning of owl class
descriptions on very large knowledge bases. International
Journal On Semantic Web and Information Systems, 2009.
U. Losch, S. Bloehdorn, and A. Rettinger. Graph kernels for rdf
data. In E. Simperl, P. Cimiano, A. Polleres, O. Corcho, and
V. Presutti, editors, ESWC, volume 7295 of Lecture Notes in
Computer Science, pages 134-148. Springer, 2012.

T. Lukasiewicz and J. Schellhase. Variable-strength conditional
preferences for ranking objects in ontologies. Web Semantics,
5(3):180-194, 2007.

J. Pan, G. Stamou, G. Stoilos, S. Taylor, and E. Thomas.
Scalable querying services over fuzzy ontologies. In Proc. of the
Int. World Wide Web Conference, WWW2008, pages
575-584. ACM, 2008.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for
Pattern Analysis. Cambridge University Press, 2004.

U. Straccia. Towards top-k query answering in description
logics: The case of DL-Lite. In Proc. of the 10th European
Conf. on Logics in Artificial Intelligence, JELIA2006, volume
4160 of LNCS, pages 439-451. Springer, 2006.

