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Abstract. Real-world knowledge often involves various degrees of un-
certainty. For such a reason, in the Semantic Web context, difficulties
arise when modeling real-world domains using only purely logical for-
malisms. Alternative approaches almost always assume the availability
of probabilistically-enriched knowledge, while this is hardly known in
advance. In addition, purely deductive exact inference may be infeasible
for Web-scale ontological knowledge bases, and does not exploit statisti-
cal regularities in data. Approximate deductive and inductive inferences
were proposed to alleviate such problems. This article proposes casting
the concept-membership prediction problem (predicting whether an indi-
vidual in a Description Logic knowledge base is a member of a concept) as
estimating a conditional probability distribution which models the poste-
rior probability of the aforementioned individual’s concept-membership
given the knowledge that can be entailed from the knowledge base re-
garding the individual. Specifically, we model such posterior probability
distribution as a generative, discriminatively structured, Bayesian net-
work, using the individual’s concept-membership w.r.t. a set of feature
concepts standing for the available knowledge about such individual.

1 Introduction

Real-world knowledge often involves various degrees of uncertainty. For such a
reason, in the context of Semantic Web (SW), difficulties arise when trying to
model real-world domains using purely logical formalisms. For this purpose, the
Uncertainty Reasoning for the World Wide Web Incubator Group ! (URW3-XG)
identified the requirements for representing and reasoning with uncertain knowl-
edge in the SW context, and provided a number of use cases showing the clear
need for explicitly representing and reasoning in presence of uncertainty [23]. As
a consequence, several approaches, particularly focusing on enriching knowledge
bases and inference procedures with probabilistic information has been proposed.
Some approaches extend knowledge representation formalisms actually used in
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the SW (such as [7]), while others rely on probabilistic enrichment of Description
Logics [1] (DLs) or logic programming formalisms (such as [28]).

Uncertainty is pervasive in real-world knowledge, but it is often hard to elicit
it on both the logical and the probabilistic side. Machine Learning (ML) methods
have been proposed to overcome several potential limitations of purely deductive
reasoning and ontology engineering [9,19,34]. These limitations are inherent to
i) the difficulty of engineering knowledge bases in expressive SW formalisms,
ii) taking regularities in data into account, iii) performing approximate reasoning
on Web-scale SW knowledge bases, and iv) reasoning in presence of incomplete
knowledge (because of the Open-World Assumption), noise and uncertainty.

Various ML techniques have been extended to tackle SW representations.
These encode regularities emerging from data as statistical models that can
later be exploited to perform efficiently a series of useful tasks, bypassing the
limitations of deductive reasoning and being able to cope with potential cases of
inconsistency.

One of these tasks is the prediction of assertions, which is at the heart of
further often more complex tasks such as query answering, clustering, ranking
and recommendation. Data-driven forms of assertion prediction could be useful
for addressing the cases where, for various reasons related to cases of incom-
pleteness and inconsistency, it is not possible to logically infer the truth value of
some statements (i.e. assertions which are not explicitly stated in nor derivable
from the knowledge base). An example of such cases is the following:

Ezample 1. Consider a knowledge base I modeling familial relationships, where
persons (each represented by an individual in the ontology) are characterized by
multiple classes (such as Father, Uncle) and relationships (such as hasChild,
hasSibling). By relying on purely deductive reasoning, it might not be possible
to assess whether a certain property holds for a given person. For example, it
might not be possible to assess whether John is an uncle or not. Assuming the
property is represented by the concept Uncle and the person by the individual
john, this can be formally expressed as:

K J=Uncle(john) A K J=—Uncle(john),

i.e. it is not possible to deductively infer from K whether the property “uncle”
holds for the person John.

Semantic Web knowledge representation languages make the Open World
Assumption: a failure on deductively infer the truth value of a given fact does
not imply that such fact is false, but rather that its truth value cannot be
deductively inferred from the KB. This differs from the Negation As Failure,
commonly used in databases and logic programs. Other issues are related to the
distributed nature of the data across the Web: multiple, mutually conflicting
pieces of knowledge may lead to contradictory answers or flawed inferences.

Most approaches to circumvent the limitations of incompleteness and incon-
sistency rely on extensions of the representation languages or of the inference



services (e.g. ontology repairing [37] and epistemic reasoning [13] and paracon-
sistent reasoning [29]).

An alternative solution consists in relying on data-driven approaches to ad-
dress the problem of missing knowledge. The prediction of the truth value of
an assertion can be cast as a classification problem, to be solved through sta-
tistical learning [41]: domain entities described by an ontology can be regarded
as statistical units, and their properties can be statistically inferred even when
they cannot be deduced from the KB. Several methods have been proposed in
the SW literature (see [34] for a recent survey). In particular, Statistical Re-
lational Learning [14] (SRL) methods face the problem of learning in domains
showing both a complex relational and a rich probabilistic structure. A major
issue with the methods proposed so far is that the induced statistical models (as
those produced by kernel methods, tensor factorization, etc.) are either difficult
to interpret by experts and to integrate in logic-based SW infrastructures, or
computationally impractical (see Sect. 5.1).

Contribution

A learning task can be either generative or discriminative [24], depending on the
structure of the target distribution. Generative models describe the joint prob-
ability of all random variables in the model (e.g. a joint probability distribution
of two sets of variables Pr(X,Y)). Discriminative models directly represent as-
pects of the distribution that are important for a specific task (e.g. a conditional
probability distribution of a set of variables given another Pr(Y | X)). The main
motivation behind the choice of a discriminative model is described by the main
principle in [41]: “If you possess a restricted amount of information for solving
some problem, try to solve the problem directly and never solve a more general
problem as an intermediate step. It is possible that the available information
is sufficient for a direct solution but is insufficient for solving a more general
intermediate problem”. Discriminative learning can also be useful for feature
selection (e.g. in the context of a mining or ontology engineering task). In [5],
authors show that many feature selection methods grounding on information
theory ultimately try to optimize some approximation of a conditional likeli-
hood (that is, a quantity proportional to the true posterior class probabilities in
a set of instances).

In this article, we propose a method for predicting the concept-membership
relation of an arbitrary individual with respect to a given target concept given
a set of training individuals (members and non-members) within a DL knowl-
edge base. The proposed method relies on a Bayesian network with generative
parameters (which can be computed efficiently) and discriminative structure
(which maximize the predictive accuracy of the model). The proposed model
can be used also with knowledge bases expressed in expressive DLs used within
the SW context, such as SHOZN (D) and SROZQ(D).

In particular, the proposed method relies on a committee of features (rep-
resented by possibly complex concepts) to define a set of random variables



{Fi,..., F,}. Such variables are then used to model a posterior probability dis-
tribution of the target concept-membership, conditioned the membership w.r.t.
the aforementioned feature concepts Pr(C | Fi,..., F,): the value of each F;
depends on the concept-membership w.r.t. the i-th feature concept, and C' is a
Boolean random variable whose conditional probability distribution depends on
the value of the F;’s. The proposed method relies on an inductive process: it
incrementally builds a Bayesian classifier through a set of hill-climbing searches
in the space of feature concepts using DL refinement operators [26].

This paper is organized as follows: Sect. 2 contains an introduction to the
Bayesian network formalism of describing independence relations among a set
of variables. In Sect. 3 we describe Terminological Bayesian Classifier models
for class-membership prediction in DL knowledge bases, and how such models
can be learned from data. In Sect. 4 we provide an empirical evaluation of the
discussed model. Finally, in Sect. 6 we summarize the proposed approach and
discuss possible research directions.

2 Bayesian Networks and Bayesian Classifiers

Graphical models [20] (GMs) are a popular framework that allows a compact
description of the joint probability distribution for a set of random variables,
by representing the underlying structure through a series of modular factors.
Depending on the underlying semantics, GMs can be grouped into two main
classes, i.e. directed and undirected graphical models, based directed and undi-
rected graphs respectively.

A Bayesian network (BN) is a directed GM which represents the conditional
dependencies in a set of random variables by using a directed acyclic graph
(DAG) G augmented with a set of conditional probability distributions g (also
referred to as parameters) associated with G’s vertexes.

In a BN, each vertex corresponds to a random variable X;, and each edge
indicates a direct influence relation between the two random variables. A BN
stipulates a set of conditional independence assumptions over its set of random
variables: each vertex X; in the DAG is conditionally independent of any subset
S C Nd(X;) of vertexes that are not descendants of X; given a joint state of
its parents. More formally: VX, : X; Il S|parents(X;), where the function
parents(X;) returns the parent vertexes of X; in the DAG representing the BN.

The conditional independence assumption allows representing the joint prob-
ability distribution Pr(Xy,...,X,) defined by a Bayesian network over a set of
random variables {Xi,...,X,,} as a production of the individual probability
distributions, conditional on their parent variables:

Pr(Xy,...,X,) = [[Pr(Xi | parents(X;)).
=1

As a result, it is possible to define Pr(Xy,...,X,) by only specifying, for
each vertex X; in the graph, the conditional probability distribution Pr(X; |



parents(X;)). Given a BN specifying a joint probability distribution over a set
of variables, it is possible to evaluate inference queries by marginalization, like
calculating the posterior probability distribution for a set of query variables given
some observed event (i.e. assignment of values to the set of evidence variables).

In BNs, common inference tasks (such as calculating the most likely value
for some variables, their marginal distribution or their conditional distribution
given some evidence) are NP-hard. However, such inference tasks are less complex
for particular classes of BNs such tasks, approximate inference algorithms exist
to efficiently infer in restricted classes of networks. For example, the variable
elimination algorithm has linear complexity in the number of vertexes if the BN
is a singly connected network [20].

Approximate inference methods for BNs also exist in literature such as Monte
Carlo algorithms, belief propagation or variational methods [20]. The compact
parametrization in graphical models allows for effective learning both model
selection (structural learning) and parameter estimation. In the case of BN,
however, finding a model which is optimal with respect to a given scoring crite-
rion (which measures how well the model fits observed data) may be not trivial:
the number of possible BN structures is super-exponential in the number of ver-
texes, making it generally impractical to perform an exhaustive search through
the space of its possible models.

Looking for a trade-off between efficiency and expressiveness, we focus on
Bayesian network classifiers, where a Bayesian network is used to model the
conditional probability distribution of a single variable, representing a concept-
membership relation.

For its simplicity, accuracy and low time complexity in both inference and
learning, we first focused on a particular subclass of Bayesian network classifiers.
Naive Bayesian classifier models the dependencies between a set of random
variables X = {X1,..., X, }, also called features, and a random variable C, also
called class, so that each pair of features are independent of each other given
the class, i.e. VX;,X; € X 14 # j = (X; 1L X;|C). This category of models
is especially interesting since it proved to be effective also in contexts in which
the underlying independence assumptions do not hold [12], outperforming more
recent approaches [6].

However, such strong independence assumptions may not capture correla-
tions between feature concepts properly. Therefore, we also consider employing
generic Bayesian network structures and polytree structures among feature vari-
ables, while retaining the edges from the class variable to feature variables. We
avoid performing an exhaustive search in the space of possible structures (that,
in the case of Bayesian classifiers, may be too complex to perform) and take the
path also used in [17] and [33] of performing an hill climbing search, making
modifications at the network structures at each step until we get to an (possibly
local) optimal solution.



3 Terminological Bayesian Classifiers for
Concept-membership Prediction

We propose employing the Bayesian network classifier [20] formalism to rep-
resent the statistical relations among a set of concepts in a given knowledge
base. In particular, we aim at using such BN to model the conditional probabil-
ity distribution Pr(C | Fy,..., F,), representing the probability that a generic
individual in a knowledge base is a member of a target concept C' given its
concept-membership relation w.r.t. a set of feature concepts {F1,..., F,} (the
random variables in the network can be considered as indicator functions tak-
ing different values depending on the concept-membership relation between the
individual and the corresponding concept).

An intuitive method for mapping the values of the random variable to the cor-
responding concept-membership relation is considering the variable as a Boolean
indicator function, assuming value True iff the individual is an instance of the
concept, False iff it is an instance of its complement, and otherwise consider-
ing the variable as non-observable: this allows to consistently handle the Open
World Assumption (OWA) characterizing the semantics of standard DLs, where
it is common to have partial knowledge about the concept-membership relations
of an individual.

However, this setting implies that not knowing the concept-membership rela-
tion w.r.t. a feature concept is uninformative [36] when predicting the concept-
membership relation w.r.t. a given target concept; this is a strong assumption
that does not hold in general. We will refer to such kind of networks as Termi-
nological Bayesian Classifiers (TBCs). More formally:

Definition 1. (Terminological Bayesian Classifier) A Terminological Bayesian
Classifier (TBC) Nx, with respect to a knowledge base K, is defined as a pair
(G, Og), representing respectively the structure and parameters of a BN, in which:

- G=W,&) is an augmented directed acyclic graph, in which:

o V={F,...,F,,C} (vertexes) is a set of random variables, each linked
to a concept defined over K. Each F; (i =1,...,n) is a Boolean random
variable, whose value depends on the membership w.r.t. a feature concept,
while C' is a Boolean variable which indicates the membership relation to
the target concept (we will use the names of variables in V to represent
the corresponding concept for brevity);

e £ C VXV isa set of edges, which model the (in)dependence relations
among the variables in V.

— Og is a set of conditional probability distributions (CPD), one for each
variable V- € 'V, representing the conditional probability distribution of the
feature concept given the state of its parents in the graph.

A very simple but effective structure is naive Bayesian one (also described
in section 2), which relies on the assumption the concept-membership w.r.t.
each of the feature concepts are independent given the concept-membership re-
lation w.r.t. the target concept; this results in the edge set £ = {(C, F;) | i €

{1,....n}}.



Ezample 2. (Example of Terminological Naive Bayesian Classifier) Given the
following set of feature concepts 2:

F ={Fe:= Female, HC := FhasChild. T, HS := JhasSibling.T },

and a target concept FWS := FatherWithSibling, a terminological naive
Bayesian classifier expressing the target concept in terms of the feature con-
cepts is the following:

Pr(Fe|Fus)

Pr(Fe|—Fus) Fe := Female

Pr(Fus)
Pr(HC|FWS)

Pr(HC| —FWS)
FWS := FatherWithSibling
Pr(HS|FWS)
HS := JhasSibling. T

Pr(HS|FWS)

We can also express correlations between feature concepts which may be use-
ful for making the conditional probability distribution more accurate, by relaxing
the constraints on the edge set £; we consider allowing for generic (acyclic) graph
structures among feature variables, and for polytree (or singly connected tree)
graph structures, which allow for exact inference to be calculated in polynomial
time [20].

Let K be a knowledge base and a a generic individual so that K | HC(a),
and the membership relation between a to the concepts Fe and HS is not known,
i.e. K}~ C(a) and K = =C(a), where C'is either Fe or HS. It is possible to infer,
through the given network, the probability that the individual a is a member of
the target concept FWS:

Pr(FWS)Pr(HC | FWS)
Pr(HC) ’

Pr(FWS(a) | HC(a)) =

where Pr(HC) = Pr(FWS)Pr(HC | FWS) 4+ Pr(-FWS)Pr(HC | -FWS).
O

In the following, we define the problem of learning a TBC N, given a knowl-
edge base I and a set of positive, negative and neutral training individuals.

The problem consists in finding a TBC N)¢ maximizing an arbitrary scoring
criterion, given a set of training individuals Indc(KC). Such individuals are orga-
nized in positive, negative and neutral examples, accordingly to their concept-
membership relation w.r.t. the target concept C in K.

More formally:

Definition 2. (Terminological Bayesian Classifier Learning Problem)
The TBC learning problem can be defined as follows:

2 Here concepts have been aliased for brevity.



Given :

— a target concept C;
— a set of training individuals Indc(K) in a knowledge base K such that:
e Va € Ind},(K) positive ezample: K = C(a),
e Va € Ind;(K) negative example: K = —C(a),
e Va € Ind(K) neutral ezample: K = C(a) A K [ —C(a);
A scoring function specifying a measure of the quality of an induced
terminological Bayesian classifier Nic w.r.t. the samples in Indc(K);

Find a network Ni& mazimizing a given scoring function Score w.r.t. the sam-
ples:

N+ arg max Score(Ni, Indc(K))).
K

The search space for finding the optimal network N¢ may be too large to
be exhaustively explored. For such a reason, the learning approach proposed
here works by incrementally building the set of feature concepts, with the aim
of obtaining a set of concepts maximizing the score of the induced network.
Each feature concept is individually searched by an inner search process, guided
by the scoring function itself, and the whole strategy of adding and removing
feature concepts follows a forward selection/backward elimination strategy. This
approach is motivated by the literature about selective Bayesian classifiers [21],
where forward selection of attributes generally increases the classifier accuracy.
The algorithm proposed here is organized in two nested loops: the inner loop is
concerned with exploring the space of possible features (concepts), e.g. by means
of DL refinement operators;e the outer loop implements the abstract greedy
feature selection strategy (such as forward selection [18]). Both procedures are
guided by a scoring function defined over the space of TBC models.

Algorithm 1 Scoring function-driven hill climbing search for a new concept
to add to the committee of DL concepts used to construct the Terminological
Bayesian Network.
function Grow(F, Indc(K), Start)
1: C « Start;
2: {Iteratively refine the concept C' until a stopping criterion is met}
3: repeat
4:  {Let C be the set of (upward and downward) refinements of the concept C
obtained by means of the p refinement operator:}
C+ {C" € pr(CYU py(C) | |IC'| < min(|C| + depth, mazLength)};
6:  {Select the concept in the set of refinements C providing the highest increase
to the score (measured by the Score function) to the TBC obtained (using the
Construct Network function) by adding the selected concept to the set C}

7:  C <+ argmax Score(Construct Network(F U {C'}, Indc(K)), Indc(K));
crec

until Stopping criterion; {E.g. no further improvements in score}

9: return C

o
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In the inner loop, outlined in Alg. 1, the search through the space of concept
definitions is performed as a hill climbing search, using the pjl refinement oper-
ator [26] (pjl(C) returns a set of refinements D of C so that D T C, which we
consider only up to a given concept length n). For each new complex concept
being evaluated, the algorithm creates a new set of concepts F’ and finds an
optimal structure, under a given set of constraints (which, in the case of ter-
minological naive Bayesian classifiers, is already fixed) and parameters (which
may vary depending on the assumptions on the nature of the ignorance model).
Then, the new network is scored, with respect to a given scoring criterion.

Algorithm 2 Forward Selection Backward Elimination method for the incre-
mental construction of terminological Bayesian classifiers.
function FSBE(K, Indc(K))

1: t 0, F" < 0

2: repeat

3t t+1;

4: {A new committee is selected among a set of possible candidates (represented
by the set of committees F ), obtained by either adding of removing a set of
concepts to the structure, so as to maximize the score of the corresponding TBC
(measured by means of the Score function)}

5. F = {Grow(F' ', Indc(K), T), Shrink(F*=*, Indc(K), maz)};

6: F' <« argmax Score(ConstructNetwork(F, Indc(K)), Indc(K));

FeF
7: until Stopping criterion; {E.g. the maximum number of concepts in F was reached }

8: N + ConstructNetwork(F", Indc(K));
9: return N};
function Shrink(F, Indc(K), maz)
1: {Finds the best network that could be obtained by removing at most max feature
concepts from the network structure, w.r.t. a given scoring criterion Score}
2: F« {F CF:|F|l-|F| < maz};
3: F* « argmax Score(ConstructNetwork(F, Indc(K)), Indc(K));

FeF
4: return F~;

In the outer loop, outlined in Alg. 2, it is possible to implement a variety
of feature selection strategies [18]. In this specific case, we propose a Forward
Selection Backward Elimination (FSBE) method, which at each iteration con-
siders adding a new concept to the network (by means of the Grow function) or
removing an existing one (by means of the Shrink function).

Different Assumptions on the Ignorance Model

During the learning process, it may happen that the concept membership be-
tween a training individual and some of the feature concepts is unknown. The
reason of such missingness can be taken into account, when learning the param-
eters of the statistical model [20]. Formally, the missing data handling method



depends on the probability distribution underlying the missingness pattern [36],
which in turn can be classified on the basis of its behavior with respect to the
variable of interest:

— Missing Completely At Random (MCAR) — the variable of interest
X is independent from its observability Ox, as any other variable in the
probabilistic model. This is the precondition for case deletion to be valid,
and missing data does not usually belong to such class [36]:

Pmissing ): (OX ui X);

— Missing At Random (MAR) — happens when the observability of the
variable of interest X depends on the value of some other variable in the
probabilistic model:

Pmissing ): (OX ui X%idden |XZI)S);

— Not Missing At Random /Informatively Missing (NMAR, IM) — here,
the actual value of the variable of interest influences the probability of its
observability:

Pmissing ’: (OX Jﬂ_ X)

Ezample 3. (Different Ignorance Models in Terminological Bayesian Classifiers)
Consider the network in Ex. 2: if the probability that the variable Fe is ob-
servable is independent on all other variables in the network, then it’s missing
completely at random; if it only depends, for example, on the value of FW.S,
then it’s missing at random; if it is dependent on the value F'e would have if it
was not missing, then it is informatively missing.

Each of the aforementioned assumptions on the missingness pattern implies
a different way of learning both network structure and parameters in presence
of partially observed data. If MCAR holds, Available Case Analysis [20] can be
used, where maximum likelihood network parameters are estimated using only
available knowledge (i.e. ignoring missing data); we are adopting the heuris-
tic used in [17] of setting network parameters to their maximum likelihood
value, which is both accurate and efficient. This decision is further motivated
by [33], which empirically motivated that generative discriminatively structured
Bayesian networks retain both the accuracy of discriminative networks and the
efficiency of parameter learning and ability to handle partial evidence typical of
generative networks.

As scoring function, similarly to [17], we adopt the conditional log-likelihood
on positive and negative training individuals, defined as 3:

3 When used to score networks, conditional log-likelihoods are calculated ignoring
available knowledge about the membership between training individuals and the
target concept.



CLL(Nk | Indc(K)) = > logPr(C(a) | Nic)+

a€lnd}(K)

+ Z log Pr(—C(a) | Ni).

a€lnds(K)

A problem with using simply CLL as scoring criterion is that it tends to favor
complex structures [20] that overfit the training data. To avoid overfitting, we
penalize the conditional log-likelihood through the Bayesian Information Crite-
rion (BIC) [20], where the penalty is proportional to the number of independent
parameters in a network (according to the minimum description length principle)
and is defined as follows:

BIC(Nk | Indc(K)) = CLL(N | Indc(K)) — 1Og], (1)
where N is the number of data points and |Og| is the number of independent
parameters in the network.

Under the naive Bayes assumption, there is no need to perform a search
for finding the optimal network, since the structure is already fixed (each node
except the target concept node has only one parent, which is the target concept
node).

For relaxing the independence assumptions in naive Bayes structures, we
follow the approach also discussed in [17,33] to perform an hill-climbing search
in the space of structures, by looking for the one maximizing the (penalized)
CLL. The exploration in the space of possible structures is performed by making
atomic modification to the structure between feature variables, and consist in
atomic operation of either edge addition, removal or reversal.

When learning network parameters from M AR data, a variety of techniques
is available, such as Expectation-Maximization (EM) or gradient ascent [20]. In
this work, we employ the EM algorithm, as outlined in Alg. 3: it first initializes
network parameters using estimates that ignore missing data; then, it consid-
ers individuals whose membership w.r.t. a generic concept D is not known as
several fractional individuals belonging, with different weights (corresponding to
the posterior probability of their concept membership), to both the components
D and —D. Such fractional individuals are used to recalculate network parame-
ters (obtaining the so-called expected counts) and the process is repeated until
convergence (e.g. when the improvement in log-likelihood is lower than a specific
threshold).

At each iteration, the EM algorithm applies the following two steps:

— Expectation: using available data and the current network parameters,
infers a distribution over possible completions for the missing knowledge;

— Maximization: considering each possible completion as a fully available
data case (weighted by its probability), infers next parameters through fre-
quency counting.



Algorithm 3 Outline for our implementation of the EM algorithm for parameter
learning from MAR data in a terminological Bayesian classifier.

function EM (N2, Indc(K))

1:
2:
3:
4:
5:

6:
7

8:
9:
10:
11:

12:
13:

{N; 2 is initialized with arbitrary heuristic parameters 98}
N =(G,0%),G = (V,8);t + 0;
repeat
{7(xs,72,)} + ExpCounts(Ni, Indc(K));
{Network parameters @é“ are updated according to the inferred expected
counts}
for X; € V, (zi, ms;) € vals(X;, parents(X;)) do
n(xg,me;) .
05t (@i, ;) AT )
=} €vals(X;)
end for
t—t+1;
ItC = <g7 8159)7
{The iterative process stops when improvements in log-likelihood are < a thresh-
old}
until L(NE | Indc(K)) — LNE | Inde(K)) < T
return Ni;

function EzpCounts(Ni, Indc(K))

1:
: for X; € V, (xs, ms;) € vals(Xy, parents(X;)) do

10:
11:
12:

NS

Nk =(G,06),G = (V,&);

(@i, me;) < 0;
end for
{n(zi, me;) will contain the expected counts for (X; = z;, parents(X;) = mz,)}

: for a € Indc(K) do

{vals(X;, parents(X;)) represents the set of possible values for X; and its par-
ents}

for X; € V,(zi, ms;) € vals(X;, parents(X;)) do
(X, Tz, ) + (24, Tz;) + Pr(zi, ma, | Nio);
end for
end for
return {7(x;, 7z;)};




Table 1. Ontologies considered in the experiments.

| Ontology | Expressivity [#Axioms|#Inds.[#Classes[#ObjProps.]
BioPax (ProTeEoMICS)| ALCHN (D) 773 49 55 47
FAMILY-TREE SROZIF(D) 2059 368 22 52
MDMO0.73 ALCHOF(D)| 1098 | 112 | 196 22
NTNAMES SHOIN (D) | 4434 | 724 49 29
WINE SHOIN (D) 1046 218 142 21

When data is NMAR/IM it may be harder to model, since we cannot
assume that observed and missing values follow the same distributions.

However, it is generally possible to extend the probabilistic model to produce
one where the MAR assumption holds; if the value of a variable associated to
the feature concept F; is informatively missing, we can consider its observability
as a indicator Boolean variable O; (such that O; = False iff K [~ F;(a) and
K [ —F;(a), O; = True otherwise) and include it in our probabilistic model, so
that F;’s ignorance model satisfies the MAR assumption (since the probability
of F; to be observable depends on the always observable indicator variable O;).

Doing this may however raise some problems, since the induced probabilistic
model will be dependent on the specific ignorance model in the training set, and
changes in such missingness pattern may impact on the model’s effectiveness.
However, to empirically evaluate the impact of doing so, we include the observ-
ability of a variable in the model by allowing its possible values to be a part of
{True,False, Unknown} (the best partition is chosen by the search process itself,
considering each of the alternatives and choosing the one providing the major
increase in the penalized CLL), and compare it with the result obtained allowing
variables to vary in {True,False} only.

4 Experiments

In this section we empirically evaluate the impact of adopting different missing
knowledge handling methods and search strategies, during the process of learning
Terminological Bayesian Classifiers from real world ontologies.

Starting from a set of real ontologies  (outlined in Table 1), we generated a
set of 20 random query concepts (each corresponding to a DL complex concept)
for each ontology ®, so that the number of individuals belonging to the target
query concept C' (resp. =C') was at least of 10 elements and the number of
individuals in C and —C was in the same order of magnitude. A DL reasoner ©

4 From TONES Ontology Repository: http://owl.cs.manchester.ac.uk/
repository/

® Using the query concept generation method available at http://lacam.di.uniba.
it/~nico/research/ontologymining.html

5 Pellet, v2.3.0 — http://clarkparsia.com/pellet/



Table 2. Statistics for cross-validated accuracy results on the generated data sets: for
each of the ontologies, 20 query concepts were generated, and each was used to obtain a
sample of positive/negative individuals, which were then used to evaluate the methods
using k-fold cross validation (with & = 10) through the accuracy (left) and the area
under the precision-recall curve (right) metrics.

Biopax (Proteomics) Generic Polytree Naive Bayes
{T,F} FS 0.95+ 0.1 {0.94 +0.15] 0.96 +£ 0.1 [0.94 £ 0.15| 0.95 + 0.1 {0.94 + 0.15
ANy IN {T,U,F}, FS 0.95+ 0.1 {0.93 +0.16{ 0.95 £ 0.1 [0.92 +0.17] 0.95 + 0.1 |0.92 £ 0.17
{T,F}, FSBE 0.95 £+ 0.1 {0.94 + 0.15] 0.95 £ 0.1 [0.94 4+ 0.15] 0.95 + 0.1 |0.94 4+ 0.15
ANy IN {T,U,F}, FSBE | 0.95 + 0.1 [0.92 £ 0.17| 0.95 £ 0.1 [0.93 £ 0.17] 0.95 + 0.1 [0.93 £ 0.17

Family-Tree Generic Polytree Nalve Bayes
{T,F} FS 1+0 1+0 1+0 1+0 1+0 1+0
ANy IN {T,U,F}, FS 1+0 1+0 1+0 1+0 1+0 1+0
{T, F}, FSBE 1+0 1+0 1+£0 1+0 1+0 1+0
ANy IN {T,U,F}, FSBE 1+0 1+0 1£0 1+0 1+0 1£0
MDMO0.73 Generic Polytree Nailve Bayes
{T,F}, FS 0.95 4 0.08]0.87 + 0.26/0.95 £ 0.08]0.87 £ 0.26[0.95 4 0.08{0.87 4+ 0.26

ANy IN {T,U,F}, FS [0.97 £ 0.06] 0.9 £ 0.23 [0.97 + 0.06] 0.9 + 0.23 [0.97 £ 0.06] 0.9 £ 0.23
{T,F}, FSBE 0.95 £+ 0.07]0.87 £ 0.26/0.95 + 0.08|0.87 + 0.26{0.95 £+ 0.08|0.87 £ 0.26
ANy IN {T,U,F}, FSBE [0.97 + 0.06| 0.9 & 0.23 [0.97 £ 0.06] 0.9 + 0.23 [0.97 + 0.06] 0.9 £+ 0.23

NTNames Generic Polytree Nalve Bayes
{T,F} FS 1+0 1+0 1+0 1+0 1+0 1+0
ANy IN {T,U,F}, FS 1+0 1+0 1+0 1+0 1+0 1+0
{T,F}, FSBE 1+0 1+0 1+£0 1+0 1+0 1+£0
ANy IN {T,U,F}, FSBE 1+0 1+0 1£0 1+0 1+0 1£0
‘Wine Generic Polytree Nalve Bayes
{T,F}, FS 0.92 + 0.1 [0.89 £0.18] 0.92 £ 0.1 [0.89 +0.18]| 0.92 + 0.1 |0.89 £ 0.18

ANy IN {T,U,F}, FS [0.92 £ 0.12[0.92 + 0.14|0.92 & 0.12]0.92 £ 0.14]0.92 £ 0.12]0.92 + 0.14
{T,F }, FSBE 0.92 +£0.1 |{0.89 +0.18] 0.92 £+ 0.1 [0.89 £ 0.18| 0.92 + 0.1 {0.89 + 0.18
ANy IN {T,U,F}, FSBE [0.92 + 0.12] 0.9 + 0.16 [0.92 £+ 0.12] 0.9 + 0.16 |0.93 + 0.11|0.91 £ 0.16

was employed to decide deductively about the concept-membership of individuals
to query concepts.

Experiments consisted in predicting the membership w.r.t. automatically
generated concept queries in the form of Terminological Bayesian Classifiers, us-
ing different sets of constraints on possible structures (and then obtaining naive
Bayes structures, polytrees or generic Bayesian networks), and on the possible
values taken by variables. For predicting the membership w.r.t. the generated
query concepts, different constraints on the available values for the variable in
networks were empirically evaluated, allowing them to be either {True,False} or
to also take a Unknown value, which represents the case in which it is not possible
to entail an individual’s membership w.r.t. a concept nor to its complement.

During the learning process, we set the depth parameter to 3 and mazLength
to 6 (3 in the case of Family-Tree, for efficiency reasons); for exploring the
space of concepts we employed the 1 refinement operator [26], available in the
DL-Learner [25] framework, for moving both upwards and downwards in the
concept lattice starting from the concept T.

Regarding the feature selection strategy (corresponding to the outer loop
in Alg. 2), two different methods were empirically evaluated, namely Forward
Selection (FS) and Forward Selection Backward Elimination (FSBE), where the



former only adds (at most) one concept and the latter also considers removing
one concept from the committee at each iteration.

Results (expressed using the Accuracy and the Area Under the Precision-
Recall curve, calculated as proposed in [10]) have been obtained through k-
fold cross validation (with k& = 10); we evaluated the proposed approach in the
Concept-membership prediction task, which consisted in predicting the member-
ship w.r.t. automatically generated query concepts, which was also used in [34]
and whose results are summarized in table 2.

From empirical evaluations, it emerged that looking for more complex struc-
tures under the penalized CLL did not provide any significant gain over simple
nalve Bayesian structures, confirming the simplicity and the accuracy of naive
Bayes network classifiers. There was no statistically significant difference ob-
served adopting different feature selection methods.

On the other hand, it was shown that the missing value handling method
impacted on the effective accuracy of the proposed approach: including the o0b-
servability of a concept-membership relation, i.e. whether it can or cannot be
proved true or false from the knowledge base, within the probabilistic model,
positively impacted on the final accuracy (but making the induced model de-
pendent on the particular ignorance mechanism).

5 Related Works

The problem of managing uncertain knowledge in the SW context has been
focused particularly from the knowledge representation perspective. Several ap-
proaches, particularly focusing on enriching knowledge and inference procedures
with probabilistic information has been proposed. Some of them extend knowl-
edge representation formalisms actually used in the SW. For example: PR-
OWL [7] extends the semantics of OWL through the first-order probabilistic
logic formalism of Multi-Entity Bayesian Networks [22]. Other approaches rely
on probabilistic enrichment of Description Logics [1] (DLs) or logic programming
formalisms. Specifically, [15, 28] rely on probabilistic lexicographic entailment
from probabilistic default reasoning.

Log-Linear DLs [31] and CRALC [8] extend DLs by means of probabilistic
graphical models [20]. Similarly, in [16] authors propose probabilistic extension of
the DL-Lite language based on Bayesian Networks. In [2], authors propose using
Binary Decision Diagrams for efficient reasoning over probabilistic ontologies
based on distribution semantics.

To handle vagueness, also fuzzy extensions of Description Logics have been
proposed in literature (see e.g. [3,38,39]).

5.1 Machine Learning Methods for Knowledge Base Completion

The idea of leveraging Machine Learning methods for handling incomplete and
noisy knowledge bases is being explored in SW literature. A variety of methods
have been proposed for predicting the truth value of assertions in Web ontologies:



those include generative probabilistic models (e.g. [11, 32, 35]), kernel methods
(e.g. [27,42]), matrix and tensor factorization methods (e.g. [30,40]) and energy-
based models (e.g. [4]).

An issue with existing methods is that they either rely on a possibly ex-
pensive search process, or induce statistical models that are not meaningful to
human experts. For example, kernel methods induce models (such as separating
hyperplanes) in a high-dimensional feature space implicitly defined by a kernel
function. The underlying kernel function itself usually relies on purely syntactic
features of the neighborhood graphs of two individual resources (such as their
common subtrees [27] or isomorphic subgraphs [42]): in both cases, there is not
necessarily an explicit meaning of such syntactic features in terms of domain
knowledge.

The Latent variable method in [35], the matrix or tensor factorization meth-
ods in [30,40], and the energy-based models in [4], try to explain the observations
(assertions) in terms of latent classes or attributes, which also may be not mean-
ingful to the domain experts and knowledge engineers.

The approaches in [32] and [11] try to overcome this limitation by expressing
the induced model using a probabilistic extension of the ALC Description Logic
and Markov Logic, respectively. However, inference in these models is intractable
in general: inference in [32] and [11] reduces to probabilistic inference to the
corresponding ground graphical model.

6 Conclusions and Future Work

This article proposes a method based on discriminatively structured Bayesian
networks to predict whether an individual is an instance of a given target con-
cept, given the available knowledge about the individual (in the form of its
concept-membership relation w.r.t. a set of feature concepts. Instead of model-
ing a fully fledged joint probability distribution among concepts in the knowl-
edge base, we face the simpler problem directly model the conditional probabil-
ity distribution of the aforementioned target concept-membership given other,
informative and eventually inter-correlated, feature concept-memberships. We
then propose a score-based approach to incrementally build the discriminatively
structured Bayesian network, using Description Logic refinement operators [26].
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