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Abstract. Considering the increasing availability of structured machine
processable knowledge in the context of the Semantic Web, only relying
on purely deductive inference may be limiting. This work proposes a new
method for similarity-based class-membership prediction in Description
Logic knowledge bases. The underlying idea is based on the concept of
propagating class-membership information among similar individuals; it
is non-parametric in nature and characterized by interesting complexity
properties, making it a potential candidate for large-scale transductive
inference. We also evaluate its effectiveness with respect to other ap-
proaches based on inductive inference in SW literature.

1 Introduction

Standard Semantic Web (SW) reasoning services rely on purely deductive in-
ference. However, this may be limiting, e.g. due to the complexity of reasoning
tasks, availability and correctness of structured knowledge. Approximate deduc-
tive and inductive inference were discussed as a possible approach to try to
overcome such limitations [25]. Various proposals to extend inductive inference
methods towards SW formalisms have been discussed in SW literature: induc-
tive methods can perform some sort of approximate and uncertain reasoning
and derive conclusions which are not derivable or refutable from the knowledge
base [25].

This work proposes a novel method for transductive inference on Description
Logic (DL) representations. In the class-membership prediction task, discrimi-
native methods proposed so far ignore unlabeled problem instances (individuals
for which the value of such class-membership is unknown); however, account-
ing for unlabeled instances during learning can provide more accurate results if
some conditions are met [6, 35]. Generative methods, on the other hand, try to
model a joint probability distribution on both instances and labels, thus facing
a possibly harder learning problem than only predicting the most probable label
for any given instance.

In Sect. 2 we will shortly survey related works, and introduce a variant to
the classic class-membership prediction problem. In Sect. 3 we will introduce
the proposed method: the assumptions it relies on, and how it can be used



for class-membership prediction on large and Web scale ontological knowledge
bases. In Sect. 4 we will provide empirical evidence for the effectiveness of the
proposed method with respect to other methods in SW literature. In Sect. 5 we
summarize the proposed approach, outline its limitations and discuss possible
future research directions.

2 Preliminaries

A variety of approaches have been proposed in the literature for solving the
class-membership prediction problem, either discriminative or generative [21].
Assuming instances are i.i.d. samples from a distribution P ranging over a space
X × Y (where X is the space of instances and Y a set of labels), generative
prediction methods first build an estimate P̂ of the joint probability distribution
P (X,Y ), and then use it to infer P̂ (Y | x) = P̂ (Y, x)/P̂ (x) for a given, unlabeled
instance x ∈ X. On the other hand, discriminative methods simply aim at
estimating when P (y | x) ≥ 0.5, for any given (x, y) ∈ X × Y (thus facing
a possibly easier problem than estimating a joint probability distribution over
X × Y ). The following shortly surveys class-membership prediction methods
proposed so far.

2.1 Discriminative Methods

Some of the approaches proposed for solving the class-membership prediction
problem are similarity-based. For instance, methods relying on the k-Nearest
Neighbors (k-NN) algorithm are discussed in [8, 25]. A variety of (dis-)similarity
measures between either individuals or concepts have been proposed: according
to [5], they can be based on features (where objects are characterized by a set of
features, such as in [16]), on the semantic-network structure (where background
information is provided in the form of a semantic network, such as in [10, 17])
or on the information content (where both the semantic network structure and
population are considered, such as in [9]).

Kernel-based algorithms [27] have been proposed for various learning tasks
from DL-based representations. This is made possible by the existence of a va-
riety of kernel functions, either for concepts or individuals (such as [11, 4, 13]).

By (implicitly) projecting instances into an high-dimensional feature space,
kernel functions allow to adapt a multitude of machine learning algorithms to
structured representations. SW literature includes methods for inducing robust
classifiers [12] or learning to rank [14] from DL knowledge bases using kernel
methods.

2.2 Generative Methods

A generative model for learning from formal ontologies is proposed in [26]: each
individual is associated to a latent variable (similar to a cluster indicator) which
influences its attributes and the relations it participates in. It proposes using a



Nonparametric Bayesian model for automatically selecting the number of possi-
ble values for such latent variables, with an inference method based on Markov
Chain Monte Carlo where posterior sampling is constrained by a predefined set
of DL axioms.

A different generative model is proposed in [23]: it focuses on learning the-
ories in a probabilistic extension of the ALC DL named crALC, and using DL
refinement operators to efficiently explore the space of concepts. It is inspired
by literature on Bayesian Logic Programs [19].

2.3 Semi-Supervised and Transductive Learning

Classic discriminative learning methods tend to ignore unlabeled instances. How-
ever, real life scenarios are usually characterized by an abundance of unlabeled
instances and a few labeled ones [6, 35]. This may also be the case for class-
membership prediction from formal ontologies: class-membership relations may
be difficult to obtain during ontology engineering tasks (e.g. due to availability
of domain experts) and inference (e.g. since deciding instance-membership may
have an intractable time complexity in some languages).

Using unlabeled instances during learning is generally known in the machine
learning community as Semi-Supervised Learning [6, 35] (SSL). A variant to this
setting is known as Transductive Learning [31] and refers to finding a labeling
only to unlabeled instances provided in the training phase, without necessar-
ily generalizing to unseen instances (and thus resulting into a possibly simpler
learning problem). If the marginal distribution of instances PX is informative
with respect to the conditional probability distribution P (Y | x), accounting for
unlabeled instances during learning can provide more accurate results [6, 35].

A possible approach is including terms dependent from PX into the objective
function. This results in the two fundamental assumptions [6]:

– Cluster assumption – The joint probability distribution P (X,Y ) is struc-
tured in such a way that points in the same cluster are likely to have the
same label.

– Manifold assumption – Assume that the distribution PX is supported on
a low-dimensional manifold: then, P (Y | x) varies smoothly, as a function of
x, with respect to the underlying structure of the manifold.

In the following sections, we discuss a similarity-based, non-parametric and
computationally efficient method for predicting missing class-membership rela-
tions. This method is discriminative in nature, but also accounts for unknown
class-membership during learning.

We will face a slightly different version of the classic class-membership pre-
diction problem, namely transductive class-membership prediction. It is inspired
to the Main Principle in [31]: “If you possess a restricted amount of information
for solving some problem, try to solve the problem directly and never solve a
more general problem as an intermediate step. It is possible that the available
information is sufficient for a direct solution but is insufficient for solving a more



general intermediate problem”. In this setting, the learning algorithm only aims
at estimating the class-membership relation of interest for a given training set of
individuals, without necessarily being able to generalize to individuals outside
such set.

In this work, we formalize the transductive class-membership prediction prob-
lem as a cost minimization problem: given a set of training individuals IndC(K)
whose class-membership relation to a target concept C is either known or un-
known, find a function f∗ : IndC(K) → {+1,−1} defined over training individ-
uals and returning a value +1 (resp. −1) if the individual likely to be a member
of C (resp. ¬C), minimizing a given cost function. More formally:

Definition 1. (Transductive Class-Membership Prediction) The Transductive
Class-Membership Prediction problem can be formalized as follows:

– Given:

• a target concept C;
• a set of training individuals IndC(K) in a knowledge base K partitioned
in positive, negative and neutral examples or, more formally, such that:
Ind+C(K) = {a ∈ IndC(K) | K |= C(a)} positive examples,
Ind−C(K) = {a ∈ IndC(K) | K |= ¬C(a)} negative examples,
Ind0C(K) = {a ∈ IndC(K) | K 6|= C(a) ∧ K 6|= ¬C(a)} neutral examples;

• A cost function cost(·) : F 7→ R, specifying the cost associated to a set
of class-membership relations assigned to training individuals by f ∈ F ,
where F is a space of labeling functions of the form f : IndC(K) 7→
{+1,−1};

– Find a labeling function f∗ ∈ F minimizing the given cost function with
respect to training individuals IndC(K):

f∗ ← arg min
f∈F

cost(f).

The function f∗ can then be used to estimate the class-membership relation
with respect to the target concept C for all training individuals a ∈ IndC(K): it
will return +1 (resp. −1) if an individual is likely to be a member of C (resp.
¬C). Note that the function is defined on the whole set of training individuals;
therefore it can possibly contradict already known class-membership relations
(thus being able to handle noisy knowledge). If IndC(K) is finite, the space of
labeling functions F is also finite, and each function f ∈ F can be equivalently
expressed as a vector in {−1,+1}n, where n = |IndC(K)|.

3 Propagating Class-Membership Information Among
Individuals

This section discusses a graph-based semi-supervised [35] method for
class-membership prediction from DL representations. The proposed method
relies on a weighted semantic similarity graph, where nodes represent positive,



negative and neutral examples of the transductive class-membership prediction
problem, and weighted edges define similarity relations among such individuals.

More formally, let K be a knowledge base, IndC(K) a set of training indi-
viduals with respect to a target concept C in K, and Y = {−1,+1} a space of
labels each corresponding to a type of class-membership relation with respect
to C. Each training individual a ∈ IndC(K) is associated to a label, which will
be +1 (resp. −1) if K |= C(a) (resp. K |= ¬C(a)), and will be unknown other-
wise, thus representing an unlabeled instance. For defining a cost over functions
f ∈ F , the proposed method relies on regularization by graph: the learning pro-
cess aims at finding a labeling function that is both consistent with given labels,
and changes smoothly between similar instances (where similarity relations are
encoded in the semantic similarity graph). This can be formalized through a
regularization framework, using a measure of the consistency to the given labels
as a loss function, and a measure of smoothness among the similarity graph as
a regularizer.

Several cost functions have been proposed in SSL literature. An appealing
class of functions, from the side of computational cost, relies on the quadratic
cost criterion framework [6, ch. 11]: for this class of functions, a closed form
solution to the cost minimization problem can be found efficiently (subsection
3.2).

3.1 Semantic Similarity Graph

A similarity graph can be represented with a weight matrix W, where the value
of Wij represents the strength of the similarity relation between two training
examples xi and xj . In graph-based SSL literature, W is often obtained either
as a Nearest Neighbor (NN) graph (where each instance is connected to the k
most similar instances in the graph, or to those with a distance under a radius
ε); or by means of a kernel function, such as the Gaussian kernel.

Finding the best way to construct W is an active area of research. In [6,
ch. 20] authors discuss a method to combine multiple similarity measures in the
context of protein function prediction, while [18, 32, 1] propose different methods
for data-driven similarity graph construction.

When empirically evaluating the proposed method, we employ the family
of dissimilarity measures between individuals in a DL knowledge base defined
in [25], since it does not constrain to any particular family of DLs. We refer
to the resulting similarity graph among individuals in a formal ontology as the
semantic similarity graph. Given a set of concept descriptions F = {F1, . . . , Fn}
and a weight vector w, such family of dissimilarity measures dFp : IndC(K) ×
IndC(K) 7→ [0, 1] is defined as:

δi(x, y) =

 0 if (K |= Fi(x) ∧ K |= Fi(y)) ∨ (K |= ¬Fi(x) ∧ K |= ¬Fi(y))
1 if (K |= Fi(x) ∧ K |= ¬Fi(y)) ∨ (K |= ¬Fi(x) ∧ K |= Fi(y))
ui otherwise

(1)

where x, y ∈ IndC(K) and p > 0.
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Fig. 1: k-Nearest Neighbor Semantic Similarity graphs for individuals BioPAX
(Proteomics) ontology (left) and for the Leo ontology (right), obtained using the
dissimilarity measure in [25]: F was defined as the set of atomic concepts in the
ontology (each weighted with its normalized entropy [25]) and p = 2.

Two examples of (k-NN) semantic similarity graphs among all individuals in
the ontologies BioPax (Proteomics) and Leo, obtained using the aforemen-
tioned dissimilarity measure, are provided in Fig. 1.

3.2 Quadratic Cost Criteria

In quadratic cost criteria [6, ch. 11], the original label space {−1,+1} (binary
classification case) is relaxed to [−1,+1]. This allows expressing the confidence
associated to a labeling (and possibly provide an indicator of P (Y | x)). For
such a reason, in the proposed method, elements of the functions space F can
be relaxed to the form f : IndC(K) 7→ [−1,+1].

As in subsection 2.3, labeling functions can be equivalently represented as
vectors y ∈ [−1,+1]n. Let ŷ ∈ [−1,+1]n be a possible labeling for a set of n
instances. We can see ŷ as a (l + u) = n dimensional vector, where the first l
indexes refer to already labeled instances, and the last u to unlabeled instances:
ŷ = [ŷl, ŷu].

Consistency of ŷ with respect to original labels can be formulated in the form
of a quadratic cost:

∑l
i=1(ŷi − yi)2 = ||ŷl − yl||2.

To regularize the labellings with respect to the graph structure, the graph
Laplacian [6] can be used. Let W be the adjacency (weight) matrix correspond-
ing to the similarity graph G and let D be the diagonal matrix obtained from
W as Dii =

∑n
j=1 Wij (i.e. by summing the elements in each column of W).

Hence, two alternative definitions for the graph Laplacian can be consid-
ered [6]:

Unnormalized graph Laplacian: L = D−W;
Normalized graph Laplacian: L = D−

1
2 LD−

1
2 = I−D−

1
2 WD−

1
2 .



Another regularization term in the form of ||ŷ||2 (or ||ŷu||2, as in [33]) can
be added to the final cost function to prefer smaller values in ŷ. This is useful
e.g. to prevent arbitrary labellings in a connected component of the semantic
similarity graph containing no labeled instances.

Putting the pieces together, we obtain two quadratic cost criteria discussed
in the literature, namely Regression on Graph [2] (RG) and the Consistency
Method [33] (CM):

Regression on Graph where the cost function can be written as:

cost(ŷ) = ||ŷl − yl||2 + µŷTLŷ + µε||ŷ||2; (2)

Consistency Method where the cost function can be written as:

cost(ŷ) = ||ŷl − yl||2 + µŷTLŷ + ||ŷu||2. (3)

(a) Before propagation (b) After propagation

Fig. 2: Example of information propagation, from a single individual, to nearby
individuals in a sample similarity graph.

We will now derive a closed form solution for the problem of finding a (global)
minimum for the quadratic cost criterion in RG; a similar process is also valid
in the case of CM. Its first order derivative is defined as follows:

1

2

∂cost(ŷ)

∂ŷ
= (S + µL + µεI)ŷ − Sy,

where S = diag(s1, . . . , sn), with si = 1 iff i ≤ l and 0 otherwise. Its second order
derivative is a positive definite matrix if ε > 0, since L is positive semi-definite.
Therefore, setting the first order derivative to 0 leads to a global minimum:



ŷ = (S + µL + µεI)−1Sy, (4)

showing that ŷ can be obtained either by matrix inversion or by solving a (pos-
sibly sparse) linear system.

Complexity of Inference The linear system in Eq. 4 can be computed effi-
ciently, with a nearly-linear time complexity in the number of non-zero elements
in the coefficient matrix. Indeed, computing ŷ can be reduced to solving a linear
system in the form Ax = b, with A = (S + µL + µεI), b = Sy and x = ŷ.
A linear system Ax = b with A ∈ Rn×n can be solved in nearly linear time
if the coefficient matrix A is symmetric diagonally dominant1 (SDD). An al-
gorithm for solving SDD linear systems is proposed in [7]: its time-complexity

is ≈ O
(
m log1/2 n

)
, where m is the number of non-zero entries in A and n is

the number of variables in the system of linear equations. This result applies to
the calculation in Eq. 4, since the graph Laplacian L is SDD [30], and thus the
coefficient matrix A is SDD. An efficient parallel solver for SDD linear systems
is proposed in [24].

Interpretation as a Probabilistic Graphical Model The terms enforcing
similar labels among nearby individuals and the regularizer in the cost functions
in Eq. 2 and Eq. 3 can be seen as energy functions [20] over ŷ in the form:

E(ŷ) = ŷT L̃ŷ, with ŷ ∈ Rn, (5)

where L̃ = µ(L + εI) in Eq. 2 and L̃ = µL+ I in Eq. 3. The energy function in
Eq. 5 corresponds to a Gaussian Random Field [20] (GRF):

p(ŷ) =
1

Z
exp

[
− βE(ŷ)

]
=

1

Z
exp

[
− βŷT L̃ŷ

]
, (6)

where Z is a normalization factor and β is an “inverse temperature parame-
ter”. The GRF in Eq. 6 defines a multivariate Gaussian distribution N (0,Σ)
on the continuous labellings ŷ, where Ω = (2βL̃) and Σ = Ω−1 represent re-
spectively its information (or precision) and covariance matrix. Such matrices
encode the independence relations among variables in the multivariate Gaussian
distribution.

Given that ŷ ∼ N (µ,Σ), ŷi and ŷj are independent iff Σij = 0 (i.e. ŷi ⊥
⊥ ŷj iff Σij = 0), while ŷi and ŷj are independent conditioned on all the other
variables iff Ωij = 0 (i.e. ŷi ⊥⊥ ŷj | ŷ − {ŷi, ŷj} iff Ωij = 0).

It is interesting to note that the information matrix Ω (and hence the graph
Laplacian of the similarity matrix) directly defines a minimal I-map Gaussian
Markov random field (GMRF) for the distribution p [20], where non-zero entries
in the matrix can be directly translated to edges in the GMRF.

1 A matrix A is SDD iff A is symmetric (i.e. A = AT ) and ∀i : Aii ≥
∑

i6=j |Aij |.
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Summary This work leverages quadratic cost criteria to efficiently solve the
transductive class-membership prediction problem. Finding a minimum ŷ for
a predefined cost criterion is equivalent to finding a labeling function f∗ in the
form f∗ : IndC(K) 7→ [−1,+1], where the labeling returned for a generic training
individual a ∈ IndC(K) correspond to the value in ŷ in the position mapped
to a. This can be done by representing the set of training individuals IndC(K)
as a partially labeled vector y of length |IndC(K)| = n, such that the first l
(resp. last u) components correspond to positive and negative (resp. neutral)
examples in IndC(K). Such y can be then used to measure the consistency with
original labels in a quadratic cost criterion; while the semantic similarity graph
can be employed to enforce smoothness in class-membership predictions among
similar training individuals. An advantage of quadratic cost criteria is that their
minimization ultimately reduces to solving a large sparse linear system with a
SDD coefficient matrix. For large-scale datasets, a subset selection method is
discussed in [6, ch. 18], which allows to greatly reduce the size of the original
linear system.

4 Empirical Evaluations

In this section, we evaluate several (inductive and transductive) methods for
class-membership prediction, with the aim of comparing the methods discussed
in section 3 with respect to other methods in SW literature. We are report-
ing evaluations for the Regularization on Graph [2] (RG) and the Consistency
Method [33] (CM); Label Propagation [34] (LP); three kinds of Support Vector
Machines [27] (SVM), namely Hard-Margin SVM (HM-SVM), Soft-Margin SVM
with L1 norm (SM-SVM) and Laplacian SVM [3] (LapSVM); and

√
l-Nearest

Neighbors for class-membership prediction [25].

4.1 Description of Evaluated Methods

LP is a graph-based SSL algorithm relying on the idea of propagating labeling
information among similar instances through an iterative process involving ma-
trix operations. It can be equivalently formulated under the quadratic criterion



framework [6, ch. 11]. More formally it associates, to each unlabeled instance in
the graph, the probability of performing a random walk until a positively (resp.
negatively) example is found.

We also evaluated Support Vector Machines (SVM), which have been pro-
posed for inducing robust classifiers from ontological knowledge bases [13, 25].
SVM classifiers come in different flavors: the classic HM-SVM binary classifier
aims at finding the hyperplane in the feature space separating the instances be-
longing to different classes, which maximizes the geometric margin between the
hyperplane and nearest training points. The SM-SVM classifier is a relaxation
of HM-SVM, which allows for some misclassification in training instances (by
relaxing the need of having perfectly linearly separable training instances in the
feature space). LapSVM is a semi-supervised extension of the SM-SVM classi-
fier: given a set of labeled instances and a set of unlabeled instances, it aims at
finding an hyperplane that is also smooth with respect to the (estimated) geom-
etry of instances. More formally, let (xl,yl) (resp. xu) be a set of labeled (resp.
unlabeled) instances. LapSVM finds a function f in a space of functions HK

determined by the kernel K (called Reproducing Kernel Hilbert Space [27]) min-

imizing 1
l

∑l
i=1 V (xi, yi, f) + γL||f ||2HK

+ γM||f ||2M, where V represents a costs
function of errors committed by f on labeled samples (typically the hinge loss
function max{0, 1−yif(xi)}), ||·||HK

imposes smoothness conditions on possible
solutions [27] and || · ||2M, intuitively, penalizes rapid changes in the classification
function between close instances in the similarity graph. It generalizes HM-SVM
(γL → 0, γM = 0) and SM-SVM (γM = 0). Our implementation of LapSVM
follows the algorithm proposed in [3]; for HM-SVM, SM-SVM and LapSVM,
we solve the underlying convex optimization problems using the Gurobi opti-
mizer [15].

RG, CM, LP and LapSVM all rely on a semantic similarity graph W as
a representation of the geometry of instances. We first calculate distances em-
ploying the dissimilarity measure defined in [25] and outlined in eq. 1, with
p = 2; then we obtain W by building a k-Nearest Neighbor graph using such
distances (since sparsity in W influences the scalability of quadratic cost crite-
ria, as written in subsection 3.2). When building the neighborhood of a node, we
handled the cases in which nodes had the same distance by introducing a ran-
dom ordering between such nodes. The Kernel function used for Hard-Margin
SVM, Soft-Margin SVM and Laplacian SVM are also defined in [25], and di-
rectly correlated with the aforementioned dissimilarity measure in eq. 1 (given
a committee of concepts F and the parameters w and p, the dissimilarity was
originally obtained as 1 − k(a, b), where k(a, b) is the value of the kernel func-
tion on a pair of individuals (a, b) in the knowledge base). We also provide a
first evaluation for the k-NN algorithm (with k =

√
l, where l is the number

of labeled instances, as discussed in [25]): we simply choose the majority class
among the

√
l most similar individuals to label each unlabeled instance.



Ontology Expressivity #Axioms #Inds. #Classes #ObjProps.

BioPax (Proteomics) ALCHN (D) 773 49 55 47
Family-Tree SROIF(D) 2059 368 22 52

Leo ALCHIF(D) 430 61 32 26
MDM0.73 ALCHOF(D) 1098 112 196 22

Wine SHOIN (D) 1046 218 142 21

Table 1: Ontologies considered in the experiments.
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(a) Leo ontology
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Fig. 4: Variation of average Match Rates with respect to the number of folds
used in the training step, during a k-Fold Cross Validation (with k = 10).

4.2 Evaluations

Starting from a set of real ontologies 2 (outlined in Table 1), we generated a set of
20 random query concepts for each ontology 3, so that the number of individuals
belonging to the target query concept C (resp. ¬C) was at least of 10 elements
and the number of individuals in C and ¬C was in the same order of magnitude.
A DL reasoner 4 was employed to decide on the theoretical concept-membership
of individuals to query concepts. We employ the evaluation metrics in [8], which
take into account the peculiarities deriving by the presence of missing knowledge:

Match Case of an individual that got the same label by the reasoner and the
inductive classifier.

Omission Error Case of an individual for which the inductive method could
not determine whether it was relevant to the query concept or not while it
was found relevant by the reasoner.

Commission Error Case of an individual found to be relevant to the query
concept while it logically belongs to its negation or vice-versa.

2 From TONES Repository: http://owl.cs.manchester.ac.uk/repository/
3 Using the methods available at http://lacam.di.uniba.it/~nico/research/

ontologymining.html
4 Pellet v2.3.0 – http://clarkparsia.com/pellet/



Leo Match Omission Commission Induction

RG 1± 0 0± 0 0± 0 0± 0
CM 1± 0 0± 0 0± 0 0± 0
LP 0.942± 0.099 0.007± 0.047 0.052± 0.091 0± 0

SM-SVM 0.963± 0.1 0± 0 0.037± 0.1 0± 0
LapSVM 0.978± 0.068 0± 0 0.022± 0.068 0± 0√

l-NN 0.971± 0.063 0± 0 0.029± 0.063 0± 0

BioPAX (Proteomics) Match Omission Commission Induction

RG 0.986± 0.051 0.004± 0.028 0.008± 0.039 0.002± 0.02
CM 0.986± 0.051 0.002± 0.02 0.01± 0.044 0.002± 0.02
LP 0.982± 0.058 0.002± 0.02 0.014± 0.051 0.002± 0.02

SM-SVM 0.972± 0.075 0± 0 0.026± 0.068 0.002± 0.02
LapSVM 0.972± 0.075 0± 0 0.026± 0.068 0.002± 0.02√

l-NN 0.972± 0.075 0± 0 0.026± 0.068 0.002± 0.02

MDM0.73 Match Omission Commission Induction

RG 0.953± 0.063 0.003± 0.016 0.011± 0.032 0.015± 0.039
CM 0.953± 0.063 0.001± 0.009 0.013± 0.036 0.018± 0.04
LP 0.942± 0.065 0± 0 0.026± 0.046 0.033± 0.054

SM-SVM 0.793± 0.252 0± 0 0.174± 0.255 0.033± 0.054
LapSVM 0.915± 0.086 0± 0 0.052± 0.065 0.033± 0.054√

l-NN 0.944± 0.069 0± 0 0.023± 0.051 0.033± 0.054

Wine Match Omission Commission Induction

RG 0.24± 0.03 0± 0.005 0.007± 0.017 0.5± 0.176
CM 0.242± 0.028 0± 0.005 0.005± 0.015 0.326± 0.121
LP 0.239± 0.035 0± 0.005 0.008± 0.021 0.656± 0.142

SM-SVM 0.235± 0.036 0± 0 0.012± 0.024 0.753± 0.024
LapSVM 0.238± 0.033 0± 0 0.009± 0.021 0.753± 0.024√

l-NN 0.241± 0.031 0± 0 0.006± 0.018 0.753± 0.024

Table 2: Match, Omission, Commission and Induction [25] results for a k-Fold
Cross Validation (k = 10) on 20 randomly generated queries. For each experi-
ment, the best parameters within the training were found using a k-Fold Cross
Validation (k = 10).



Induction Case of an individual found to be relevant to the query concept or to
its negation, while either case is not logically derivable from the knowledge
base.

Before evaluating on the test set, parameter tuning was performed for each
of the methods via a k-Fold Cross Validation (k = 10) within the training set,
for finding the parameters with lower classification error in cross-validation. For
LapSVM, the (γL, γM) parameters were varied in {10−4, 10−3, . . . , 104}, while
for SM-SVM, which follows the implementation in [27, pg. 223], the C parameter
was allowed to vary in {10−4, 10−3, . . . , 104}. Similarly, the (µ, ε) parameters in
RG and CM where varied in {10−4, 10−3, . . . , 104}. The parameter k for building
the k-NN semantic similarity graph, used by LapSVM, RG, CM and LP, was
varied in {2, 4, 8, 16}. We did not carefully choose the concept committee F
defining the dissimilarity measure: we simply used the set of atomic concepts
in the ontology, thus ignoring any prior knowledge about the structure of the
target concept C or the presence of statistical correlations in the knowledge base.
Each concept in the committee F was weighted with its normalized entropy [25].
RG, CM and LP give an indication of the uncertainty associated to a specific
labeling by associating values in the set [−1,+1] to each node. A labelingx ≈ 0
(specifically, when the label was in the set [−10−4, 10−4] we decided to leave
the node unlabeled, so to try to provide more robust estimates of labels (and
thus a possibly lower commission error and match rates and higher omission
error rates). This may happen e.g. when there are no labeled examples within a
connected component of the semantic similarity graph.

In Tab. 2 we report average index rates and standard deviations for each of
the ontologies in Tab. 1; the only exceptions is for the Family-Tree ontology,
which provided 0.76 ± 0.13 match rates and 0.24 ± 0.13 induction rates for all
methods (except for LP, where the induction rates were 0.21± 0.14. In general,
LapSVM outperformed the other two non-SSL SVM classification methods. This
happened with varying quantities of unlabeled data; this is shown for example in
the behavior of match rates in Fig. 4a, where results obtained in a k-Fold Cross
Validation using a varying quantity of labeled instances. However, standard SVM
training is O(m3) in general, where m is the number of training instances; there-
fore, some extra effort may be necessary to make SVM methods scale on SW
knowledge bases. Such results may provide some empirical evidence that induc-
tive methods for formal ontologies may take benefit from also accounting for
unlabeled instances during learning.

4.3 Limitations

A fundamental problem in graph-based SSL methods relies in the construction
of the similarity graph [6, 35], which is known to have a strong impact on the
effectiveness of SSL methods. In this work, we identified similarity relations
among individuals using a measure defined in [25] together with a set of atomic
concepts defined in the ontology. However, this might not always be effective



Fig. 5: Semantic Similarity Graph for the persons in the AIFB Portal ontol-
ogy, after removing predicates encoding research group affiliations: each color
corresponds to a distinct research group affiliation (white was used when no
affiliation was available).

(consider e.g. a shallow ontology, where only a few properties of each individual
are described by means of atomic concepts).

A possible approach to leverage the relational graph structure between in-
dividuals in a DL ontology, would be the use of graph and RDF kernels, such
as the one defined in [4, 22, 28]. By implicitly mapping individuals into a fea-
ture space, a kernel function k(·, ·) naturally induces a Euclidean distance in the
kernel feature space [27]:

||φ(xi)− φ(xj)||2 = k(xi, xi) + k(xj , xj)− 2k(xi, xj),

where φ is a function mapping each instance to some feature space. However,
this might not always be effective: Fig. 5 shows a Semantic Similarity Graph
constructed among persons in the AIFB Portal Ontology 5, using the RDF
kernel described in [22] (ignoring research group affiliations), where each differ-
ent colors corresponds to a distinct research group. Similarity relations among
individuals inferred by such a kernel do not accurately reflect similarities in re-

5 http://www.aifb.kit.edu/web/Wissensmanagement/Portal, as of 21 Feb. 2012



search group affiliations, suggesting that the choice of a kernel could be task
dependent in some contexts.

5 Conclusion and Future Works

This work proposes a method for transductive class-membership prediction based
on graph-based regularization from DL representations. It leverages neutral ex-
amples by propagating class-membership information among similar individuals
in the training set. The proposed method relies on quadratic cost criteria, whose
optimization can be reduced to solving a (possibly sparse) symmetric and diag-
onally dominant linear system. This is a well-known problem in the literature,
with a nearly linear time complexity in the number of non-zero entries in the
coefficient matrix.

The similarity graph is known to have a strong influence on the effective-
ness of graph-based SSL methods [35], suggesting that the graph construction
process might be guided by the prediction task at hand. The construction of
the similarity graph for class-membership learning tasks can be influenced by
factors such as the structure of the target concept C, or by finding statistical
correlation within the knowledge base. Also, it is not clear whether continuous
labels assigned by the proposed methods may correspond to posterior proba-
bility estimates from the statistical point of view. In future work, we aim at
investigating the aforementioned two aspects of graph-based transductive and
semi-supervised class-membership prediction from DL representations.
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